We investigate the problem of recovering the possibly both space and time-dependent forcing term along with the temperature in hyperbolic systems from many integral observations. In practice, these average weighted integral observations can be considered as generalized interior point measurements. This linear but ill-posed problem is solved using the Tikhonov regularization method in order to obtain the closest stable solution to a given a priori known initial estimate. We prove the Fréchet differentiability of the Tikhonov regularization functional and derive a formula for its gradient. This minimization problem is solved iteratively using the conjugate gradient method. The numerical discretization of the well-posed problems, that are: the direct, adjoint and sensitivity problems that need to be solved at each iteration is performed using finite difference methods. Numerical results are presented and discussed for one and two-dimensional problems.
Purpose
This study aims to at numerically retrieve five constant dimensional thermo-physical properties of a biological tissue from dimensionless boundary temperature measurements.
Design/methodology/approach
The thermal-wave model of bio-heat transfer is used as an appropriate model because of its realism in situations in which the heat flux is extremely high or low and imposed over a short duration of time. For the numerical discretization, an unconditionally stable finite difference scheme used as a direct solver is developed. The sensitivity coefficients of the dimensionless boundary temperature measurements with respect to five constant dimensionless parameters appearing in a non-dimensionalised version of the governing hyperbolic model are computed. The retrieval of those dimensionless parameters, from both exact and noisy measurements, is successfully achieved by using a minimization procedure based on the MATLAB optimization toolbox routine lsqnonlin. The values of the five-dimensional parameters are recovered by inverting a nonlinear system of algebraic equations connecting those parameters to the dimensionless parameters whose values have already been recovered.
Findings
Accurate and stable numerical solutions for the unknown thermo-physical properties of a biological tissue from dimensionless boundary temperature measurements are obtained using the proposed numerical procedure.
Research limitations/implications
The current investigation is limited to the retrieval of constant physical properties, but future work will investigate the reconstruction of the space-dependent blood perfusion coefficient.
Practical implications
As noise inherently present in practical measurements is inverted, the paper is of practical significance and models a real-world situation.
Social implications
The findings of the present paper are of considerable significance and interest to practitioners in the biomedical engineering and medical physics sectors.
Originality/value
In comparison to Alkhwaji et al. (2012), the novelty and contribution of this work are as follows: considering the more general and realistic thermal-wave model of bio-heat transfer, accounting for a relaxation time; allowing for the tissue to have a finite size; and reconstructing five thermally significant dimensional parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.