This paper introduces a novel approach to characterize and semi-quantify common petroleum contaminants (natural gas condensate, gasoline, diesel, flare pit residue, and heavy crude oil) and their underlying aromatic hydrocarbon components in solutions based on their fluorescence spectral signatures. The method uses fluorescence excitation-emission matrices (EEMs) combined with multivariate statistical procedures: parallel factor analysis (PARAFAC) and soft independent method of class analogy (SIMCA) to identify the petroleum products. Quantitatively, fluorescence intensities of EEMs of analyzed petroleum products at different concentrations are used to establish standard calibration curves that can be employed to estimate unknown concentrations of similar petroleum products in solutions. As well, underlying aromatic hydrocarbon component concentrations are estimated by performing customized PARAFAC analysis. This approach provides fingerprints for different petroleum products along with estimates of their concentrations in non-fluorescing solvents. Concentrations of predicted PARAFAC components were validated by laboratory chemical analytical results of the same petroleum products.
The ultraviolet induced fluorescence signatures of various petroleum products were evaluated in different soils to examine the impact of soil type, grain size, porosity, and mineralogy. The different soil matrices induced changes to the spectral features of petroleum hydrocarbon fluorescence excitation-emission matrices (EEMs). Once the effect of the soil matrix was characterized, fluorescence EEMs were analyzed using parallel factor analysis (PARAFAC) and soft independent method of class analogy (SIMCA) to identify the petroleum products and their underlying aromatic hydrocarbon components. For quantitative analysis, total fluorescence values obtained from fluorescence EEMs of analyzed petroleum products were used to estimate their concentrations in different soil matrices. Results indicated that this approach provides identifying fingerprinting and reasonable estimate of concentrations for a number of petroleum products in different soils matrices.Résumé : Les spectres de divers produits pétroliers induits par fluorescence ultraviolette ont été évaluées dans différents sols afin d'étudier l'impact du type de sol, de la granulométrie, de la porosité et de la minéralogie. Les différentes matrices de sol ont causé des changements dans les caractéristiques spectrales des matrices d'excitation-émission de fluorescence (EEM) des hydrocarbures pétroliers. Une fois l'effet de la matrice de sol caractérisé, la fluorescence des EEM a été analysée par analyse factorielle parallèle (PARAFAC) et par une méthode douce indépendante d'analogie de classe (SIMCA) afin d'identifier les produits pétroliers et leurs composantes hydrocarbures aromatiques sous-jacentes. Quant à l'analyse quantitative, les valeurs de fluorescence totale obtenues de la fluorescence des EEM des produits pétroliers analysés ont été utilisées pour estimer leurs concentrations dans différentes matrices de sol. Les résultats indiquent que cette approche fournit des empreintes identificatrices et une estimation raisonnable des concentrations pour plusieurs produits pétroliers dans différentes matrices de sol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.