A multivariate function f (x 1 , . . . , x N ) can be evaluated via interpolation if its values are given at a finite number nodes of a hyperprismatic grid in the space of independent variables x 1 , x 2 , . . . , x N . Interpolation is a way to characterize an infinite data structure (function) by a finite number of data approximately. Hence it leaves an infinite arbitrariness unless a mathematical structure with finite number of flexibilities is imposed for the unknown function. Imposed structure has finite dimensionality. When the dimensionality increases unboundedly, the complexities grow rapidly in the standard methods. The main purpose here is to partition the given multivariate data into a set of low-variate data by using high dimensional model representation (HDMR) and then, to interpolate each individual data in the set via Lagrange interpolation formula. As a result, computational complexity of the given problem and needed CPU time to obtain the results through a series of programs in computers decrease.
a b s t r a c tDealing with univariate or bivariate data sets instead of a multivariate data set is an important concern in interpolation problems and computer-based applications. This paper presents a new data partitioning method that partitions the given multivariate data set into univariate and bivariate data sets and constructs an approximate analytical structure that interpolates function values at arbitrarily distributed points of the given grid. A number of numerical implementations are also given to show the performance of this new method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.