Rewritable nanoelectronics offers new perspectives and potential to both fundamental research and technological applications. Such interest has driven the research focus into conducting domain walls: pseudo-2D conducting channels that can be created, positioned, and deleted in-situ. However, the study of conductive domain walls is largely limited to wide-gap ferroelectrics, where the conductivity typically arises from changes in charge carrier density, due to screening charge accumulation at polar discontinuities. This work shows that, in narrow-gap correlated insulators with strong chargelattice coupling, local strain gradients can drive enhanced conductivity at the domain walls -removing polar-discontinuities as a criteria for conductivity. By combining different scanning probe microscopy techniques, we demonstrate that the domain wall conductivity in GaV 4 S 8 does not follow the established screening charge model but rather arises from the large surface reconstruction across the Jahn-Teller transition and the associated strain gradients across the domain walls. This mechanism can turn any structural, or even magnetic, domain wall conducting, if the electronic structure of the host is susceptible to local strain gradients -drastically expanding the range of materials and phenomena that may be applicable to domain wall-based nanoelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.