Abstract. The Galician shelf off NW Spain (43N ø 9W ø) exhibits mesoscale spatial and temporal changes in biological productivity associated with upwelling. Spatial heterogeneity results from local geomorphic and land-sea interactions superimposed on the large scale atmospheric processes that produce upwelling. Wind-induced upwelling events, commonly of short (i.e., week) duration, are more common in the summer than in the winter. A series of cruises, including some time series sampling, and satellite imagery analysis showed that surface upwelling was more common and persistent on the northern coast compared with the western coast off the coastal embayments, the Rias Bajas. Nearshore off the rias, coastal runoff, which is greater in the rainy winter/spring versus the dry summer, affected upwelling. In early summer, upwelling less often reaches the surface because of increased water column stratification associated with lower surface salinities and thus upwelling is not detected by satellite imagery. Conversely, in late summer, upwelling more often reaches the surface because coastal runoff is reduced during the dry summer months and the water column tends to be less stratified. Plankton biomass and rate processes along the Galician shelf reflected both ambient hydrographic conditions as well as prior history of upwelling or downwelling. Phytoplankton and bacterioplankton were in greatest abundance during upwelling conditions (June through August); in contrast, both zooplankton and fish larvae exhibited highest abundances in March, when there were upwelling conditions prior to our cruise. Spatial differences in the duration and frequency of upwelling events, in combination with advection of water masses, are critical to the patterns of water column productivity and sardine fisheries production off the Galician coast. More persistent upwelling at this NW corner of the Iberian peninsula supports large sardine fisheries because zooplankton and larval fish populations have time to respond to the higher primary production. Farther down the western Galician coast, the episodic upwelling and resultant intermittent primary production does not support a stable food supply needed to support fisheries. Times series sampling revealed mean response times of bacteria, phytoplankton, and zooplankton to be on the order of a day, days, and weeks, respectively. Sardines showed no spawning response in the relatively short time series sampling. The observed distributional patterns of fish eggs and larvae showed some offshore transport of fish larvae that were spawned inshore during upwelling periods and aggregation of larvae in a convergence zone northwest of Cabo Villano.
Summer upwelling and downwelling processes were characterized in the Northern Galician Rias during July and August 2008 by means of sampling carried out onboard R/V Mytilus (CSIC) and R/V Lura (IEO). Thermohaline variables, dissolved oxygen, nutrients, chlorophyll, phytoplankton, ciliates and zooplankton abundances were measured at sections located in the Rias of Viveiro, Barqueiro and Ortigueira and their adjacent shelves. Ekman transport was calculated from QuikSCAT satellite, upwelling intensity estimated with upwelling index from the average daily geostrophic winds, and SST maps obtained from NASA GHRSST satellite. Ekman transport and SST behaviour showed two different patterns: (i) offshore and upwelling favourable conditions on 13-22 nd of July; (ii) onshore and downwelling favourable conditions from 23 rd July to 19 th August). During upwelling, TS diagram showed an intrusion of Eastern North Atlantic Central Water affecting the continental shelf but not the rias. Nutrient salt concentrations increased with depth, reaching their maximum values near the mouth of Ortigueira Ria. During downwelling, coastal water increased its temperature (18.5-19.8ºC) and was retained inside rias; nutrients were nearly depleted, except for the innermost ria (estuarine zone) due to fluvial nutrient inputs. In this inner area, the maximum of chlorophyll-a (Barqueiro Ria) was observed. Low phytoplankton abundances were measured in both cases, even though a short increase in the plankton biomass was observed inside rias during upwelling, while under downwelling a small red tide of Lingulodinium polyedrum was detected. During the upwelling period Northern Rias tend to be mesotrophic systems as revealed by nutrient concentrations, chlorophyll levels and plankton abundances. On the contrary, in similar situations, the Western Rias behaves as eutrophics. In the Northern Galician shelf, the average of upwelling (downwelling) was 1.9±0.8 (2.1±1.0) events•yr-1 from May to September (1990-2008) considering at least one week with favourable wind conditions and UI averages out of the range of ±500 m 3 •s-1 •km-1. *Manuscript Click here to download Manuscript: MS_Ospina-Alvarez et al v3.docx Click here to view linked References
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.