Acquiring acoustic slowness data in open & cased hole and a reliable cement bond log in one run without jeopardising data quality or increasing rig time is desired for fast and optimize data acquisition. This paper reviews the steps taken to ensure acoustic slowness and cement bond data acquisition fulfils the objective, while minimising the cost in an offshore challenging environment for formations with variable acoustic velocities that could be masked by strong casing arrivals. Crossed dipole acoustic logging is typically preferred to acquire within open hole environment for best quality signal. However, due to drilling challenges this could not be done in the subject well. Data was acquired in 6in open hole and 7" liner (8.5 in Open hole behind) cased hole section together in one run. Shear slowness in slow formation requires propagation of the low frequency dipole flexural wave whereas compressional slowness acquisition and cement bond evaluation requires high frequency monopole data. An improved understanding of cased-hole acoustic modes allowed developing the ability to transmit acoustic energies at optimal frequencies in order to acquire formation slowness concurrently with cement bond. Acoustic data quality in cased hole is dependent on cement bond quality. Poor bonding or presence of fluid between casing and the formation inserts noise in the data by damping the acoustic signal. Hence, understanding of the cement bond quality is critical in interpreting the cased hole acoustic data. The low amplitude of the compressional first arrival indicated the presence of cement bonded with the casing. Absence of casing ringing signal at the beginning and presence of strong formation signal in the VDL indicated good bonding of cement with formation. Filtration of the cased hole acquired semblances were necessary to remove the casing and fluids noises. Acquired data shows good coherency and continuous compressional and shear slowness's were extracted from the good quality semblances. This integrated strategy to acquire the formation slowness and to evaluate the cement bond quality and top of cement allowed meeting all objectives with one tool in single run. The risk of casing waves that could have masked the formation slowness signal was mitigated by transmitting acoustic energies at optimal frequencies with wider bandwidth followed by the semblance processing. The effects of borehole ovality, tool centralization, or casing centralization on waveform propagation were studied to supplement the interpretation. The first times strategic logging application in PETRONAS allowed time and cost saving and fulfilled all data acquisition plan. Data quality assurance and decision tree allowed drafting a workflow to assure data quality. This solution showed importance of smart planning to maximise advanced tools capabilities to acquire acoustic slowness data and cement evaluation in single run in offshore challenging environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.