Molecular level parameters are investigated computationally to understand the factors that are responsible for the higher efficiency in derivatives of 9,10-bis(1-naphthyl)anthracene (alpha-ADN), 9,10-bis(2-naphthyl)anthracene (beta-ADN), their tetramethyl derivatives (alpha,beta-TMADN) and the t-Bu derivative (beta-TBADN) as blue light emitting electroluminescent (EL) layers in organic light emitting diodes (OLEDs). DFT studies at the B3LYP/6-31G(d,p) level have been carried out on the substituted anthracenes. The absorption spectra are simulated using time dependent DFT methods (TD-DFT) whereas the emission spectra are approximated by optimizing the excited state by HF/CI-Singles and then carrying out the vertical CI calculations by the TD-DFT method. The reorganization energy for estimating the hole and electron transport is calculated. The transfer integrals between parallely stacked molecules in the bulk state are estimated by calculating the electronic splitting. The substituted anthracenes are compared with unsubstituted anthracene and yet untested 9,10-dianthrylanthracene (TANTH). A larger and slower buildup of the electrons and holes in the EL layer, due to the higher reorganization energy and smaller electronic coupling between the adjacent molecules could lead to an increase in hole-electron recombination in the layer and thus increase the efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.