Sensors of different wavelengths in remote sensing field capture data. Each and every sensor has its own capabilities and limitations. Synthetic aperture radar (SAR) collects data that has a high spatial and radiometric resolution. The optical remote sensors capture images with good spectral information. Fused images from these sensors will have high information when implemented with a better algorithm resulting in the proper collection of data to predict weather forecasting, soil exploration, and crop classification. This work encompasses a fusion of optical and radar data of Sentinel series satellites using a deep learning-based convolutional neural network (CNN). The three-fold work of the image fusion approach is performed in CNN as layered architecture covering the image transform in the convolutional layer, followed by the activity level measurement in the max pooling layer. Finally, the decision-making is performed in the fully connected layer. The objective of the work is to show that the proposed deep learning-based CNN fusion approach overcomes some of the difficulties in the traditional image fusion approaches. To show the performance of the CNN-based image fusion, a good number of image quality assessment metrics are analyzed. The consequences demonstrate that the integration of spatial and spectral information is numerically evident in the output image and has high robustness. Finally, the objective assessment results outperform the state-of-the-art fusion methodologies.
Sensors of different wavelengths in remote sensing field capture data. Each and every sensor has its own capabilities and limitations. Synthetic aperture radar (SAR) collects data that has a high spatial and radiometric resolution. The optical remote sensors capture images with good spectral information. Fused images from these sensors will have high information when implemented with a better algorithm resulting in the proper collection of data to predict weather forecasting, soil exploration, and crop classification. This work encompasses a fusion of optical and radar data of Sentinel series satellites using a deep learning-based convolutional neural network (CNN). The three-fold work of the image fusion approach is performed in CNN as layered architecture covering the image transform in the convolutional layer, followed by the activity level measurement in the max pooling layer. Finally, the decision-making is performed in the fully connected layer. The objective of the work is to show that the proposed deep learning-based CNN fusion approach overcomes some of the difficulties in the traditional image fusion approaches. To show the performance of the CNN-based image fusion, a good number of image quality assessment metrics are analyzed. The consequences demonstrate that the integration of spatial and spectral information is numerically evident in the output image and has high robustness. Finally, the objective assessment results outperform the state-of-the-art fusion methodologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.