ElsevierGarcía Mollá, VM.; Simarro Haro, MDLA.; Martínez Zaldívar, FJ.; González Salvador, A.; Vidal Maciá, AM. (2016). Maximum likelihood soft-output detection through Sphere Decoding combined with box optimization. Signal Processing. 125:249-260. Abstract This paper focuses on the improvement of known algorithms for maximum likelihood soft-output detection. These algorithms usually have large computational complexity, that can be reduced by using clipping. Taking two well-known soft-output maximum likelihood algorithms (Repeated Tree Search and Single Tree Search) as a starting point, a number of modifications (based mainly on box optimization techniques) are proposed to improve the efficiency of the search. As a result, two new algorithms are proposed for soft-output maximum likelihood detection. One of them is based on Repeated Tree Search (which can be applied with and without clipping). The other one is based on Single Tree Search, which can only be applied to the case with clipping. The proposed algorithms are compared with the Single Tree Search algorithm, and their efficiency is evaluated in standard detection problems (4x4 16-QAM and 4x4 64-QAM) with and without clipping. The results show that the efficiency of the proposed algorithms is similar to that of the Single Tree Search algorithm in the case 4x4 16-QAM; however, in the case 4x4 64-QAM, the new algorithms are far more
Achieving optimal detection performance with low complexity is one of the major challenges, mainly in multiple-input multiple-output (MIMO) detection. This paper presents three low-complexity Soft-Output MIMO detection algorithms that are based mainly on Box Optimization (BO) techniques. The proposed methods provide good performance with low computational cost using continuous constrained optimization techniques. The first proposed algorithm is a non-optimal Soft-Output detector of reduced complexity. This algorithm has been compared with the Soft-Output Fixed Complexity (SFSD) algorithm, obtaining lower complexity and similar performance. The two remaining algorithms are employed in a turbo receiver, achieving the max-log Maximum a Posteriori (MAP) performance. The two Soft-Input Soft-Output (SISO) algorithms were proposed in a previous work for soft-output MIMO detection. This work presents its extension for iterative decoding. The SISO algorithms presented are developed and compared with the SISO Single Tree Search algorithm (STS), in terms of efficiency and computational cost. The results show that the proposed algorithms are more efficient for high order constellation than the STS
Generalized Spatial Modulation (GSM) is a transmission technique used in wireless communications in which only part of the transmitter antennas are activated during each time signaling period. A low complexity Sphere Decoding (SD) algorithm to achieve maximum likelihood (ML) detection has recently been proposed by using subproblem partitions, sorting preprocessing and radius updating. However, the ordering method has a serious limitation when the number of activated antennas is equal to the number of received antennas. Therefore, alternative sorting methods are studied in the present paper. In addition, the computational cost of the ML algorithm can be high when the system sizes increases. In this paper a suboptimal version is proposed where only the first L SD subproblems are carried out. The results show that the proposed algorithm achieves near optimal performance at lower computational cost than ML algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.