Hepatitis B virus (HBV) is a life-threatening virus that causes very serious liver-related diseases from the family of Hepadnaviridae having very rare qualities resembling retroviruses. In this paper, we analyze the effect of antiviral therapy through mathematical modeling by using Liao's homotopy analysis method (LHAM) that defines the connection between the target liver cells and the HBV. We also examine the basic nonlinear differential equation by LHAM to get a semi-analytical solution. This can be a very straight and direct method which provides the appropriate solution. Moreover, the local and global stability analysis of disease-free and endemic equilibrium is done using Lyapunov function. Mathematica 12 software is used to find out the solutions and graphical representations. We also discuss the numerical simulations up to sixth-order approximation and error analysis using the same software.
Anti-viral therapy is comparatively very effective for patients who get affected by the hepatitis B virus. It is of prime importance to understand the different relations among the viruses, immune responses and overall health of the liver. In this paper, mathematical modeling is done to analyze and understand the effect of antiviral therapy using LHAM which describes the possible relation to HBV and target liver cells. The numerical simulations and error analysis are done up to a sixth-order approximation with the help of Matlab. This paper analyzes how the number of infected cells largely gets reduced and also how the liver damage can be controlled. Therefore, the treatment is successful for HBV infected patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.