Oligomerization can endow proteins with novel structural and catalytic properties. The native dimer of bovine seminal ribonucleases (BS-RNase) binds, melts and catalyses the hydrolysis of double-stranded ribonucleic acids 30-fold better than its pancreatic homologue, the monomeric RNase A. Chemically induced oligomers of pancreatic RNase A are also found to show an increase in enzyme activity on double-stranded poly(A).poly(U) (Libonati, M. Bertoldi, M. and Sorrentino, S. (1996) Biochem. J. 318, 287-290) and, therefore, can be considered as potential immunosuppressive and cytotoxic agents. We report here a study on the relationship between surface histidine topography in oligomeric forms of these ribonucleases and their catalytic properties. Subtle changes in structure conformation of both BS-RNase and oligomeric RNase A are shown to result in a modification of the affinity of these proteins toward the immobilized transition-metal chelate, IDA-Cu(II). Because, such conformational change has been shown to correlate with an improvement of the newly acquired biological activities upon oligomerization, we can conclude that surface histidines topography constitutes an exquisite probe for the study of protein structure/function relationship.
A direct continuous UV-Vis spectrophotometric assay has been developed for VanX, a D-alanyl-D-alanine aminodipeptidase necessary for vancomycin resistance. This method is based on the hydrolysis of the alternative substrate D-alanyl-alpha-(R)-phenylthio-glycine D-Ala-D-Gly(S-Ph)-OH (H-DAla-DPsg-OH, 5a). Spontaneous decomposition of the released phenylthioglycine generates thiophenol, which is quantified using Ellman's reagent. The dipeptide behaved as an excellent substrate of VanX, exhibiting Michaelis-Menten kinetics with a kcat of 76 +/- 5/s and a KM of 0.83 +/- 0.08 mm (kcat = 46 +/- 3/s and KM = 0.11 +/- 0.01 mm for D-Ala-D-Ala). Determination of the kinetic parameters of the previously reported mechanism-based inhibitor D-Ala-D-Gly(SPhip-CHF2)-OH (H-D-Ala-DPfg-OH, 5c) [Araoz, R., Anhalt, E., René, L., Badet-Denisot, M.-A., Courvalin, P. & Badet, B. (2000) Biochemistry 39, 15971-15979] using the substrate reported in the present study yielded values of Kirr of 22 +/- 1 microM and kinact of 9.3 +/- 0.4/min in good agreement with values previously obtained in our laboratory (Kirr = 30 +/- 1 mm; kinact = 7.3 +/- 0.3/min). In addition, inhibition by the competing substrate D-Ala-D-Ala resulted in determination of a Ki = 70 +/- 6 microM close to the previously reported KM value. These results demonstrate that the present assay is a convenient, rapid and sensitive tool in the search for VanX inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.