Although cross-sectional magnetic resonance examination of the head and body is useful for screening large regions of tissue, subsectional regions of the head and body often need to be examined. Orthogonally directed, selectively irradiated planes with different flip angles produce a spatially limited signal region from which two- or three-dimensional volume images can be reconstructed. Images with limited fields-of-view can be acquired in reduced imaging time. We present a general description of this technique. These subsectional or "inner volume" images eliminate respiratory motion artifacts by excluding moving tissues from the imaged volume. A result of this technique is a high signal from rapid pulsatile blood flow, produced without cardiac gating the pulse sequence.
To overcome the limitations of magnetic resonance (MR) cardiac imaging using nongated data acquisition, three methods for acquiring a gating signal, which could be applied in the presence of a magnetic field, were tested: an air-filled plethysmograph, a laser-Doppler capillary perfusion flowmeter, and an electrocardiographic gating device. The gating signal was used for timing of MR imaging sequences (IS). Application of each gating method yielded significant improvements in structural MR image resolution of the beating heart, although with both plethysmography and laser-Doppler velocimetry it was difficult to obtain cardiac images from the early portion of the cardiac cycle due to an intrinsic delay between the ECG R wave and peripheral detection of the gating signal. Variations in the temporal relationship between the R wave and plethysmographic and laser-Doppler signals produced inconsistencies in the timing of IS. Since the ECG signal is virtually free of these problems, the preferable gating technique is IS synchronization with an electrocardiogram. The gated images acquired with this method provide sharp definition of internal cardiac morphology and can be temporarily referenced to end diastole and end systole or intermediate points.
Encoding the precession phase angle of proton nuclei for Fourier analysis has produced accurate measurement of fluid velocity vector components by MRI. A pair of identical gradient pulses separated in time by exactly 1/2 TE, are used to linearly encode the phase of flow velocity vector components without changing the phase of stationary nuclei. Two-dimensional Fourier transformation of signals gave velocity density images of laminar flow in angled tubes which were in agreement with the laws of vector addition. These velocity profile images provide a quantitative method for the investigation of fluid dynamics and hemodynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.