We investigate the CO excitation of normal (near-IR selected BzK) star-forming (SF) disk galaxies at z = 1.5 using IRAM Plateau de Bure observations of the CO[2-1], CO , and CO[5-4] transitions for four galaxies, including VLA observations of CO[1-0] for three of them, with the aim of constraining the average state of H 2 gas. By exploiting previous knowledge of the velocity range, spatial extent, and size of the CO emission, we measure reliable line fluxes with a signal-to-noise ratio >4-7 for individual transitions. While the average CO spectral line energy distribution (SLED) has a subthermal excitation similar to the Milky Way (MW) up to CO[3-2], we show that the average CO emission is four times stronger than assuming MW excitation. This demonstrates that there is an additional component of more excited, denser, and possibly warmer molecular gas. The ratio of CO[5-4] to lower-J CO emission is lower than in local (ultra-)luminous infrared galaxies (ULIRGs) and high-redshift starbursting submillimeter galaxies, however, and appears to be closely correlated with the average intensity of the radiation field U and with the star formation surface density, but not with the star formation efficiency. The luminosity of the CO transition is found to be linearly correlated with the bolometric infrared luminosity over four orders of magnitudes. For this transition, z = 1.5 BzK galaxies follow the same linear trend as local spirals and (U)LIRGs and high-redshift star-bursting submillimeter galaxies. The CO[5-4] luminosity is thus empirically related to the dense gas and might be a more convenient way to probe it than standard high-density tracers that are much fainter than CO. We see excitation variations among our sample galaxies that can be linked to their evolutionary state and clumpiness in optical rest-frame images. In one galaxy we see spatially resolved excitation variations, where the more highly excited part of the galaxy corresponds to the location of massive SF clumps. This provides support to models that suggest that giant clumps are the main source of the high-excitation CO emission in high-redshift disk-like galaxies.
We make use of deep 1.2 mm-continuum observations (12.7µJy/beam RMS) of a 1 arcmin 2 region in the Hubble Ultra Deep Field (HUDF) to probe dust-enshrouded star formation from 330 Lyman-break galaxies spanning the redshift range z = 2-10 (to ∼2-3 M ⊙ /yr at 1σ over the entire range). Given the depth and area of ASPECS, we would expect to tentatively detect 35 galaxies extrapolating the Meurer z ∼ 0 IRX-β relation to z ≥ 2 (assuming T d ∼ 35 K). However, only 6 tentative detections are found at z 2 in ASPECS, with just three at >3σ. Subdividing z = 2-10 galaxies according to stellar mass, U V luminosity, and U V -continuum slope and stacking the results, we only find a significant detection in the most massive (>10 9.75 M ⊙ ) subsample, with an infrared excess (IRX=L IR /L UV ) consistent with previous z ∼ 2 results. However, the infrared excess we measure from our large selection of sub-L * (<10 9.75 M ⊙ ) galaxies is 0.11 +0.32 −0.42 ±0.34 (bootstrap and formal uncertainties) and 0.14 +0.15 −0.14 ±0.18 at z = 2-3 and z = 4-10, respectively, lying below even an SMC IRX-β relation (95% confidence). These results demonstrate the relevance of stellar mass for predicting the IR luminosity of z 2 galaxies. We find that the evolution of the IRX-stellar mass relationship depends on the evolution of the dust temperature. If the dust temperature increases monotonically with redshift (∝ (1 + z) 0.32 ) such that T d ∼ 44-50 K at z ≥ 4, current results are suggestive of little evolution in this relationship to z ∼ 6. We use these results to revisit recent estimates of the z ≥ 3 star-formation rate density.
ABSTRACT. The Spitzer Survey of Stellar Structure in Galaxies (S 4 G) is an Exploration Science Legacy Program approved for the Spitzer post-cryogenic mission. It is a volume-, magnitude-, and size-limited (d < 40 Mpc, jbj > 30°, m Bcorr < 15:5, and D 25 > 1 0 ) survey of 2331 galaxies using the Infrared Array Camera (IRAC) at 3.6 and 4.5 μm. Each galaxy is observed for 240 s and mapped to ≥1:5 × D 25 . The final mosaicked images have a typical 1σ rms noise level of 0.0072 and 0:0093 MJy sr À1 at 3.6 and 4.5 μm, respectively. Our azimuthally averaged surface brightness profile typically traces isophotes at μ 3:6μm ðABÞð1σÞ ∼ 27 mag arcsec À2 , equivalent to a stellar mass surface density of ∼1 M ⊙ pc À2 . S 4 G thus provides an unprecedented data set for the study of the distribution of mass and stellar structures in the local universe. This large, unbiased, and extremely deep sample of all Hubble types from dwarfs to spirals to ellipticals will allow for detailed structural studies, not only as a function of stellar mass, but also as a function of the local environment. The data from this survey will serve as a vital testbed for cosmological simulations predicting the stellar mass properties of present-day galaxies. This article introduces the survey and describes the sample selection, the significance of the 3.6 and 4.5 μm bands for this study, and the data collection and survey strategies. We describe the S 4 G data analysis pipeline and present measurements for a first set of galaxies, observed in both the cryogenic and warm mission phases of Spitzer. For every galaxy we tabulate the galaxy diameter, position angle, axial ratio, inclination at μ 3:6μm ðABÞ ¼ 25:5, and 26:5 mag arcsec À2 (equivalent to ≈μ B ðABÞ ¼ 27:2 and 28:2 mag arcsec À2 , respectively). These measurements will form the initial S 4 G catalog of galaxy properties. We also measure the total magnitude and the azimuthally averaged radial profiles of ellipticity, position angle, surface brightness, and color. Finally, using the galaxy-fitting code GALFIT, we deconstruct each galaxy into its main constituent stellar components: the bulge/spheroid, disk, bar, and nuclear point source, where necessary. Together, these data products will provide a comprehensive and definitive catalog of stellar structures, mass, and properties of galaxies in the nearby universe and will enable a variety of scientific investigations, some of which are highlighted in this introductory S 4 G survey paper.
The South Pole Telescope has discovered one hundred gravitationally lensed, high-redshift, dusty, star-forming galaxies (DSFGs). We present 0.5 resolution 870 µm Atacama Large Millimeter/submillimeter Array imaging of a sample of 47 DSFGs spanning z = 1.9 − 5.7, and construct gravitational lens models of these sources. Our visibility-based lens modeling incorporates several sources of residual interferometric calibration uncertainty, allowing us to properly account for noise in the observations. At least 70% of the sources are strongly lensed by foreground galaxies (µ 870µm > 2), with a median magnification µ 870µm = 6.3, extending to µ 870µm > 30. We compare the intrinsic size distribution of the strongly lensed sources to a similar number of unlensed DSFGs and find no significant differences in spite of a bias between the magnification and intrinsic source size. This may indicate that the true size distribution of DSFGs is relatively narrow. We use the source sizes to constrain the wavelength at which the dust optical depth is unity and find this wavelength to be correlated with the dust temperature. This correlation leads to discrepancies in dust mass estimates of a factor of 2 compared to estimates using a single value for this wavelength. We investigate the relationship between the [CII] line and the far-infrared luminosity and find that the same correlation between the [CII]/L FIR ratio and Σ FIR found for low-redshift star-forming galaxies applies to high-redshift galaxies and extends at least two orders of magnitude higher in Σ FIR . This lends further credence to the claim that the compactness of the IR-emitting region is the controlling parameter in establishing the "[CII] deficit."
Using the Atacama Large Millimeter/submillimeter Array, we have conducted a blind redshift survey in the 3 mm atmospheric transmission window for 26 strongly lensed dusty star-forming galaxies (DSFGs) selected with the South Pole Telescope. The sources were selected to have S 1.4 mm > 20 mJy and a dust-like spectrum and, to remove low-z sources, not have bright radio (S 843 MHz < 6 mJy) or far-infrared counterparts (S 100 μm < 1 Jy, S 60 μm < 200 mJy). We robustly detect 44 line features in our survey, which we identify as redshifted emission lines of 12 CO, 13 CO, C i, H 2 O, and H 2 O +. We find one or more spectral features in 23 sources yielding a ∼90% detection rate for this survey; in 12 of these sources we detect multiple lines, while in 11 sources we detect only a single line. For the sources with only one detected line, we break the redshift degeneracy with additional spectroscopic observations if available, or infer the most likely line identification based on photometric data. This yields secure redshifts for ∼70% of the sample. The three sources with no lines detected are tentatively placed in the redshift desert between 1.7 < z < 2.0. The resulting mean redshift of our sample isz = 3.5. This finding is in contrast to the redshift distribution of radio-identified DSFGs, which have a significantly lower mean redshift ofz = 2.3 and for which only 10%-15% of the population is expected to be at z > 3. We discuss the effect of gravitational
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.