With increasing availability, the use of healthcare databases as complementary data source for drug safety signal detection has been explored to circumvent the limitations inherent in spontaneous reporting. Areas covered: To review the methods proposed for safety signal detection in healthcare databases and their performance. Expert opinion: Fifteen different data mining methods were identified. They are based on disproportionality analysis, traditional pharmacoepidemiological designs (e.g. self-controlled designs), sequence symmetry analysis (SSA), sequential statistical testing, temporal association rules, supervised machine learning (SML), and the tree-based scan statistic. When considering the performance of these methods, the self-controlled designs, the SSA, and the SML seemed the most interesting approaches. In the perspective of routine signal detection from healthcare databases, pragmatic aspects such as the need for stakeholders to understand the method in order to be confident in the results must be considered. From this point of view, the SSA could appear as the most suitable method for signal detection in healthcare databases owing to its simple principle and its ability to provide a risk estimate. However, further developments, such as automated prioritization, are needed to help stakeholders handle the multiplicity of signals.
Objective To quantify the risk of hypoglycaemia associated with the concomitant use of dipeptidyl peptidase-4 (DPP-4) inhibitors and sulphonylureas compared with placebo and sulphonylureas.Design Systematic review and meta-analysis.Data sources Medline, ISI Web of Science, SCOPUS, Cochrane Central Register of Controlled Trials, and clinicaltrial.gov were searched without any language restriction.Study selection Placebo controlled randomised trials comprising at least 50 participants with type 2 diabetes treated with DPP-4 inhibitors and sulphonylureas.Review methods Risk of bias in each trial was assessed using the Cochrane Collaboration tool. The risk ratio of hypoglycaemia with 95% confidence intervals was computed for each study and then pooled using fixed effect models (Mantel Haenszel method) or random effect models, when appropriate. Subgroup analyses were also performed (eg, dose of DPP-4 inhibitors). The number needed to harm (NNH) was estimated according to treatment duration.Results 10 studies were included, representing a total of 6546 participants (4020 received DPP-4 inhibitors plus sulphonylureas, 2526 placebo plus sulphonylureas). The risk ratio of hypoglycaemia was 1.52 (95% confidence interval 1.29 to 1.80). The NNH was 17 (95% confidence interval 11 to 30) for a treatment duration of six months or less, 15 (9 to 26) for 6.1 to 12 months, and 8 (5 to 15) for more than one year. In subgroup analysis, no difference was found between full and low doses of DPP-4 inhibitors: the risk ratio related to full dose DPP-4 inhibitors was 1.66 (1.34 to 2.06), whereas the increased risk ratio related to low dose DPP-4 inhibitors did not reach statistical significance (1.33, 0.92 to 1.94).Conclusions Addition of DPP-4 inhibitors to sulphonylurea to treat people with type 2 diabetes is associated with a 50% increased risk of hypoglycaemia and to one excess case of hypoglycaemia for every 17 patients in the first six months of treatment. This highlights the need to respect recommendations for a decrease in sulphonylureas dose when initiating DPP-4 inhibitors and to assess the effectiveness of this risk minimisation strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.