We report the observation of highly anisotropic Dirac fermions in a Bi square net of SrMnBi(2), based on a first-principles calculation, angle-resolved photoemission spectroscopy, and quantum oscillations for high-quality single crystals. We found that the Dirac dispersion is generally induced in the (SrBi)(+) layer containing a double-sized Bi square net. In contrast to the commonly observed isotropic Dirac cone, the Dirac cone in SrMnBi(2) is highly anisotropic with a large momentum-dependent disparity of Fermi velocities of ~8. These findings demonstrate that a Bi square net, a common building block of various layered pnictides, provides a new platform that hosts highly anisotropic Dirac fermions.
Low-energy electronic structures in AMnBi 2 (A=alkaline earths) are investigated using a first-principles calculation and a tight binding method. An anisotropic Dirac dispersion is induced by the checkerboard arrangement of A atoms above and below the Bi square net in AMnBi 2 . SrMnBi 2 and CaMnBi 2 have a different kind of Dirac dispersion due to the different stacking of nearby A layers, where each Sr (Ca) of one side appears at the coincident (staggered) xy position of the same element at the other side. Using the tight binding analysis, we reveal the chirality of the anisotropic Dirac electrons as well as the sizable spin-orbit coupling effect in the Bi square net. We suggest that the Bi square net provides a platform for the interplay between anisotropic Dirac electrons and the neighboring environment such as magnetism and structural changes.
The Dirac fermions of Sb square net in AEMnSb2 (AE=Sr, Ba) are investigated by using first-principles calculation. BaMnSb2 contains Sb square net layers with a coincident stacking of Ba atoms, exhibiting Dirac fermion behavior. On the other hand, SrMnSb2 has a staggered stacking of Sr atoms with distorted zig-zag chains of Sb atoms. Application of hydrostatic pressure on the latter induces a structural change from a staggered to a coincident arrangement of AE ions accompanying a transition from insulator to a metal containing Dirac fermions. The structural investigations show that the stacking type of cation and orthorhombic distortion of Sb layers are the main factors to decide the crystal symmetry of the material. We propose that the Dirac fermions can be obtained by controlling the size of cation and the volume of AEMnSb2 compounds.
First-principles density functional theory (DFT) based calculations were carried out to investigate the structural and electronic properties of beryllium and nitrogen co-doped and BeN/BeO molecules-doped graphene systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.