Fatty acid composition was identified as a potential biological indicator of the effects of environmental exposure to radiological contaminants. This end point was measured in muscle tissues of Mink frogs ( Rana septentrionalis ) obtained from a radiologically contaminated pond and from a non-contaminated pond. It was also measured after the frogs obtained from both ponds were exposed to a 4 Gy (60)Co γ radiation dose delivered in vivo at a dose rate of approximately 8 Gy/min. Statistically significant differences for the increase of a couple of polyunsaturated omega-3 fatty acid residues and the decrease of a polyunsaturated omega-6 fatty acid residue were observed between radiologically contaminated and non-contaminated frogs, indicating a partial remodeling of muscle lipids in response to a chronic low-dose tritium exposure. The effects of an acute high-dose exposure to (60)Co γ radiation, either for the radiologically contaminated or non-contaminated frogs indicated fast post-irradiation fatty acid changes with an increase of polyunsaturated and decrease of saturated fatty acid contents. Fatty acid composition was found to be a sensitive marker that may be useful to study and monitor biota health in environments that are radiologically contaminated, as well as for understanding the differences between low chronic and high acute stress responses.
Abstract. Adaptive responses were observed using the micronucleus frequency in bullfrog tadpoles. In tanks in which control tadpoles were placed in contact with tadpoles that were previously housed in tritiated water (3.0 × 10 4 Bq/L), the cells from all animals responded as though they were "adapted". This suggests that direct exposure to 3.0 × 10 4 Bq/L tritium contributes to an increased resistance to a high dose of radiation in liver cells. It also suggests that being in contact with tadpoles that were previously exposed to 3.0 × 10 4 Bq/L tritium (bystander effect) contributes to an increased resistance to a high dose of radiation in liver cells. In vitro exposures were also conducted using primary cultures of liver cells obtained from an unexposednon-bystander tadpole. In these control cells, it was observed that exposure to 100 mGy of 60 Co gamma radiation (delivered at a dose rate of 5 mGy/min) did not affect the micronucleus frequency whereas exposure to 4 Gy (delivered at a dose rate of about 10.2 Gy/min) increased the micronucleus frequency. Prior exposure to a low dose of 60 Co gamma radiation (100 mGy delivered at a dose rate of 5 mGy/min) induced an adaptive response, protecting the cells from harm caused by exposure to subsequent high doses of 60 Co gamma radiation (4 Gy delivered at a dose rate of about 10.2 Gy/min). Using the adaptive response (determined using micronucleus assay) as a biomarker, the data obtained suggest that bystander effects do play a role in wild populations since bullfrog tadpoles that were not exposed to tritium responded like the tadpoles that were directly exposed to tritium after being placed in contact with them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.