PurposeThe purpose of this paper is to investigate the effect of main process parameters of selective laser melting (SLM) technology on single lines and single layers manufactured from 17‐4 PH martensitic powder using the experimental design approach.Design/methodology/approachA fractional factorial approach has been applied to vary and to identify the optimal set of process parameters using three different powder particle size distributions for 17‐4 PH steel. This paper assesses the impact of influence factors such as process and material parameters on objective factors such as dimension of single lines and single layers, as well as surface roughness.FindingsThe influence of process parameters and materials properties on single line and single layer manufacture is shown and proved statistically. The effect of each process parameter and their interactions on single layer and single line stability and quality has been investigated, and a complex objective function analyzing geometrical stability of single lines has been proposed. The findings indicate the most appropriate 17‐4 PH powder particle size distribution.Originality/valueThe research provides a systematic scientific approach using fractional factorial experiment design to identify the influence of process parameters, materials parameters and their combinations on essential martensitic steels (17‐4 PH steel) single lines and single layers characteristics such as geometrical stability and surface roughness. This approach will be extended to 3D parts fabrication and reported in a later paper.
Selective laser melting (SLM) is an additive manufacturing process that enables direct manufacturing of 3D complex shape parts and internal architecture from powder materials. The SLM technology is characterised by high temperature gradients and solidification rates that have a significant effect on the microstructures and properties of final parts. The present paper aims at understanding the influence of the initial properties of various martensitic stainless steel powders on the final microstructures and mechanical properties of parts manufactured using the same optimised SLM process parameter settings. The results obtained show that for applied optimum process parameters, the thermal effects are the same for all martensitic powders used. Besides, the final microstructures and properties are different. The results clearly show the effect of the initial complex chemical composition of the martensitic precipitation hardening powder on the microstructures of final parts, and consequently, on their properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.