The domain structure in thin films of an immiscible polystyrene/poly(methyl methacrylate) (PS/PMMA) blend was studied after spin-casting from a common solvent. Atomic force microscopy (AFM) combined with selective dissolution was used to obtain three-dimensional information on the domain morphology in thin films. Three different common solvents and three different substrate surfaces were studied. Distinct differences in the thin film domain structure and surface topography are observed depending on the substrate surface energy and the solubility of the two polymers in the three solvents. The topographic modulation can be explained by a different rate of solvent evaporation during spincoating for the two phases. The normal and lateral organization of the phase-separated domains is governed by a complex interplay between preferential aggregation of one phase at the substrate and phase segregation in the film. Additionally, some of the results suggest that a dewetting process may be involved in the domain formation. The structures obtained after spin-casting are far from thermodynamic equilibrium. The equilibration of the films during annealing depends strongly on the phase morphology, and long-lived metastable configurations are found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.