Pulmonary hypertension (PH) is an unremitting disease defined by a progressive increase in pulmonary vascular resistance leading to right-sided heart failure. Using mice with genetic deletions of caveolin 1 (Cav1) and eNOS (Nos3), we demonstrate here that chronic eNOS activation secondary to loss of caveolin-1 can lead to PH. Consistent with a role for eNOS in the pathogenesis of PH, the pulmonary vascular remodeling and PH phenotype of Cav1 -/-mice were absent in Cav1 -/-Nos3 -/-mice. Further, treatment of Cav1 -/-mice with either MnTMPyP (a superoxide scavenger) or l-NAME (a NOS inhibitor) reversed their pulmonary vascular pathology and PH phenotype. Activation of eNOS in Cav1 -/-lungs led to the impairment of PKG activity through tyrosine nitration. Moreover, the PH phenotype in Cav1 -/-lungs could be rescued by overexpression of PKG-1. The clinical relevance of the data was indicated by the observation that lung tissue from patients with idiopathic pulmonary arterial hypertension demonstrated increased eNOS activation and PKG nitration and reduced caveolin-1 expression. Together, these data show that loss of caveolin-1 leads to hyperactive eNOS and subsequent tyrosine nitration-dependent impairment of PKG activity, which results in PH. Thus, targeting of PKG nitration represents a potential novel therapeutic strategy for the treatment of PH.
Recovery of endothelial integrity after vascular injury is vital for endothelial barrier function and vascular homeostasis. However, little is known about the molecular mechanisms of endothelial barrier repair following injury. To investigate the functional role of forkhead box M1 (FoxM1) in the mechanism of endothelial repair, we generated endothelial cell-restricted FoxM1-deficient mice (FoxM1 CKO mice). These mutant mice were viable and exhibited no overt phenotype. However, in response to the inflammatory mediator LPS, FoxM1 CKO mice displayed significantly protracted increase in lung vascular permeability and markedly increased mortality.
In malignant tumors, metastasis genes are typically deregulated by aberrant expression or splicing. Osteopontin is expressed at high levels by various cancers and contributes importantly to their invasive potential. In contrast, osteopontin derived from host cells induces cellular immunity and could bolster antitumor protection by cytotoxic T lymphocytes. Here we show that breast cancer cells express multiple splice variants of osteopontin. According to RT-PCR analysis of human breast tissue specimens, the splice variant osteopontin-c is a highly specific marker for transformed cells, which is not expressed in their surrounding normal tissue. The fulllength form of osteopontin aggregates in the presence of physiologic amounts of calcium and, in this state, leads to enhanced cell adhesion. Ostensibly, this effect is inhibitory for tumor cell dissemination. The shortest splice variant, osteopontin-c, does not aggregate in the presence of calcium and enhances clone formation in soft agar. According to microarray analysis, osteopontin-c induces the expression of oxidoreductases, consistent with protection from anoikis during anchorage-independent growth. These studies define a third functional domain of osteopontin, beside the C-terminal CD44-binding site and the central integrin-binding site. They also provide evidence for a bifunctional character of osteopontin, with the soluble form supporting invasiveness and the aggregated form promoting adhesion.
While the acquisition of invasiveness is a critical step in early stage breast carcinomas (DCIS), no established molecular markers reliably identify tumor progression. The metastasis gene osteopontin is subject to alternative splicing, which yields 3 messages, osteopontin-a, osteopontin-b and osteopontin-c. Osteopontin-c is selectively expressed in invasive, but not in noninvasive, breast tumor cell lines, and it effectively supports anchorage independence. We evaluated osteopontin-c as a biomarker. The RNA message for osteopontin-c was present in 16 of 20 breast cancers (80%), but was undetectable in 22 normal specimens obtained from reduction mammoplasty. In contrast, osteopontin-a RNA was expressed at various levels in all 20 breast cancers, 11 tumor-surrounding tissues and 21 normal samples. The splice variant osteopontin-b was present at barely detectable levels in 18 of 20 cancers and in 6 of 22 normal breasts. By immunohistochemistry, 66 of 69 normal breasts were negative, while 3 showed low level staining. Among the breast cancers, 43 of 56 cores (77%) stained positive for osteopontin-c. When correlated with tumor grade, the staining for osteopontin-c increased from grade 1 to grade 3. In a total of 178 breast specimens analyzed, osteopontin-c was present in 78% of cancers, 36% of surrounding tissues and 0% of normal tissues. Furthermore, osteopontin-c detects a higher fraction of breast cancers than estrogen receptor (ER), progesterone receptor or HER2. In conjunction, osteopontin-c, ER and HER2 reliably predict grade 2-3 breast cancer. Hence, osteopontin-c is a diagnostic and prognostic marker that may have value in a diagnostic panel together with conventional breast cancer markers. ' 2007 Wiley-Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.