The study evaluated the interrelationships between the extent of thoracic movements and respiratory chemical drive in shaping the intensity of the sensation of dyspnea. Normal subjects rated their sensations of dyspnea as PCO2 increased during free rebreathing and during rebreathing while ventilation was voluntarily maintained at a constant base-line level. Another trial evaluated the effects on the intensity of dyspnea, of voluntary reduction in the level of ventilation while PCO2 was held constant. During rebreathing, there was a power function relationship between changes in PCO2 and the intensity of dyspnea. At a given PCO2, constraining tidal volume and breathing frequency to the prerebreathing base-line level resulted in an increase in dyspnea. The fractional differences in the intensity of dyspnea between free and constrained rebreathing were independent of PCO2. However, the absolute difference in the intensity of dyspnea between free and constrained rebreathing enlarged with increasing hypercapnia. At PCO2 of 50 Torr, this difference correlated significantly with the increase in both minute ventilation (r = 0.675) and tidal volume (r = 0.757) above the base line during free rebreathing. Similarly, during steady-state hypercapnia at 50 Torr PCO2, the intensity of dyspnea increased progressively as ventilation was voluntarily reduced from the spontaneously adopted free-breathing level. These results indicate that dyspnea increases with the level of respiratory chemical drive but that the intensity of the sensation is further accentuated when ventilation is constrained below that demanded by the level of chemical drive. This may be explained by a loss of inhibitory feedback from lung or chest wall mechanoreceptors acting on brain stem and/or cortical centers.
Breathing during hypercapnia is determined by reflex mechanisms but may also be influenced by respiratory sensations. The present study examined the effects of voluntary changes in level and pattern of breathing on the sensation of dyspnea at a constant level of chemical drive. Studies were carried out in 15 normal male subjects during steady-state hypercapnia at an end-tidal PCO2 of 50 Torr. The intensity of dyspnea was rated on a Borg category scale. In one experiment (n = 8), the level of ventilation was increased or decreased from the spontaneously adopted level (Vspont). In another experiment (n = 9), the minute ventilation was maintained at the level spontaneously adopted at PCO2 of 50 Torr and breathing frequency was increased or decreased from the spontaneously adopted level (fspont) with reciprocal changes in tidal volume. The intensity of dyspnea (expressed as percentage of the spontaneous breathing level) correlated with ventilation (% Vspont) negatively at levels below Vspont (r = -0.70, P less than 0.001) and positively above Vspont (r = 0.80, P less than 0.001). At a constant level of ventilation, the intensity of dyspnea correlated with breathing frequency (% fspont) negatively at levels below fspont (r = -0.69, P less than 0.001) and positively at levels above fspont (r = 0.75, P less than 0.001). These results indicate that dyspnea intensifies when the level or pattern of breathing is voluntarily changed from the spontaneously adopted level. This is consistent with the possibility that ventilatory responses to changes in chemical drive may be regulated in part to minimize the sensations of respiratory effort and discomfort.
The purposes of this study were 1) to characterize the immediate inspiratory muscle and ventilation responses to inspiratory resistive loading during sleep in humans and 2) to determine whether upper airway caliber was compromised in the presence of a resistive load. Ventilation variables, chest wall, and upper airway inspiratory muscle electromyograms (EMG), and upper airway resistance were measured for two breaths immediately preceding and immediately following six applications of an inspiratory resistive load of 15 cmH2O.l-1 X s during wakefulness and stage 2 sleep. During wakefulness, chest wall inspiratory peak EMG activity increased 40 +/- 15% (SE), and inspiratory time increased 20 +/- 5%. Therefore, the rate of rise of chest wall EMG increased 14 +/- 10.9% (NS). Upper airway inspiratory muscle activity changed in an inconsistent fashion with application of the load. Tidal volume decreased 16 +/- 6%, and upper airway resistance increased 141 +/- 23% above pre-load levels. During sleep, there was no significant chest wall or upper airway inspiratory muscle or timing responses to loading. Tidal volume decreased 40 +/- 7% and upper airway resistance increased 188 +/- 52%, changes greater than those observed during wakefulness. We conclude that 1) the immediate inspiratory muscle and timing responses observed during inspiratory resistive loading in wakefulness were absent during sleep, 2) there was inadequate activation of upper airway inspiratory muscle activity to compensate for the increased upper airway inspiratory subatmospheric pressure present during loading, and 3) the alteration in upper airway mechanics during resistive loading was greater during sleep than wakefulness.
To determine whether the intensity of dyspnea at a given level of respiratory motor output depends on the nature of the stimulus to ventilation, we compared the sensation of difficulty in breathing during progressive hypercapnia (HC) induced by rebreathing, during incremental exercise (E) on a cycle ergometer, and during isocapnic voluntary hyperventilation (IVH) in 16 normal subjects. The sensation of difficulty in breathing was rated at 30-s intervals by use of a visual analog scale. There were no differences in the level of ventilation or the base-line intensity of dyspnea before any of the interventions. The intensity of dyspnea grew linearly with increases in ventilation during HC [r = 0.98 +/- 0.02 (SD)], E (0.95 +/- 0.03), and IVH (0.95 +/- 0.06). The change in intensity of dyspnea produced by a given change in ventilation was significantly greater during HC [0.27 +/- 0.04 (SE)] than during E (0.12 +/- 0.02, P less than 0.01) and during HC (0.30 +/- 0.04) than during IVH (0.16 +/- 0.03, P less than 0.01). The difference in intensity of dyspnea between HC and E or HC and IVH increased as the difference in end-tidal PCO2 widened, even though the time course of the increase in ventilation was similar. No significant differences were measured in the intensity of dyspnea that occurred with changes in ventilation between E and IVH. These results indicate that under nearisocapnic conditions the sensation of dyspnea produced by a given level of ventilation seems not to depend on the method used to produce that level of ventilation.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.