This study determined the effectiveness of an inoculant (BB), molasses, or a mixture of either BB and molasses (BBM) or BB and fibrolytic enzymes (BBE) for improving the fermentation and aerobic stability of bermudagrass. A 6-wk regrowth of Tifton 85 bermudagrass was conserved in quadruplicate mini silos alone or after treatment application. The inoculant contained a mixture of P. pentosaceus 12455, 1 x10(5) cfu/g of fresh forage, L. buchneri 40788, 4 x10(5) cfu/g of fresh forage, and beta-glucanase, alpha-amylase, and xylanase; BBE contained similar bacteria and enzymes as BB, but greater enzyme activities. Chemical composition was quantified after 2, 4, 7, 30, and 60 d of ensiling. Microbial composition and aerobic stability were measured after 60 d of ensiling, at which point the pH of additive-treated silages was consistently lower and DM recovery was higher than in untreated silages. The BB, BBM, and molasses-treated silages had less ammonia N than untreated silages, and BB, BBM, and BBE-treated silages had less residual water-soluble carbohydrates than untreated silages. All silages had high acetic acid (47.5 g/kg DM) and low lactic acid (1.7 g/kg DM) concentrations. However, untreated and BBE-treated silages had more butyric acid and ammonia N, suggesting that a clostridial fermentation had occurred. These butyric forages were more aerobically stable (27 d) but less desirable for feeding than those ensiled with BB or molasses, which were stable for 6.9 d. In conclusion, BB and molasses treatments improved the digestibility and fermentation of bermudagrass and produced higher quality silages that were stable for 6.9 d. Mixing BB with molasses or the inoculant tested was not more beneficial than BB or molasses alone.
This work aimed to compare the effectiveness of bacterial inoculants or a chemical additive for preserving whole-crop silages made from wheat, two pea varieties (cv Magnus or Setchey) or intercrops of wheat and both pea varieties. The forages were harvested when the wheat and peas were at the late milk and yellow wrinkled stages respectively, and conserved in five replicate mini silos without treatment (control) or after treatment with 2.5 g kg −1 of formic acid (FA) or 1 × 10 6 cfu g −1 fresh forage of either of two bacterial inoculants (WholeCrop Gold (WCG) or WholeCrop Legume (WCL), Biotal Ltd, Cardiff, UK). WCG contained Lactobacillus buchneri, while WCL contained L buchneri, L plantarum and Pediococcus pentosaceus. Chemical composition, fermentation characteristics and in vitro digestibility were measured after 65 days of ensiling. Additive-treated bi-crops had lower (P < 0.05) concentrations of soluble N, ammonia N and lactic acid than the controls. Inoculant-treated bi-crops had higher (P < 0.001) acetic acid and lower (P < 0.001) residual water-soluble carbohydrate (WSC) concentrations than FAtreated bi-crops. WCL-treated bi-crops had similar residual WSC concentrations to and higher (P < 0.05) starch concentrations than WCG-treated bi-crops. Unlike Magnus pea bi-crops, Setchey pea bi-crops treated with WCL had lower concentrations of ammonia N (P < 0.01) and acetic acid (P < 0.001) and higher concentrations of starch (P < 0.001) and lactic acid (P < 0.05) than those treated with WCG. For both bi-crops, FA-treated bi-crops were more stable (P < 0.05) than inoculant-treated or untreated silages, and the stability of inoculant-treated and untreated silages was similar. Formic acid treatment was also the most effective at reducing WSC losses in the bi-crop and pea silages. Inoculant treatment reduced proteolysis in these forages but did not prevent spoilage in the bi-crops. Additive treatment reduced yeast counts but did not improve the fermentation in wheat silages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.