The Internet of Things (IoT) and the integration of medical devices perform hand-to-hand solutions and comfort to their users. With the inclusion of IoT under medical devices a hybrid (IoMT) is formulated. This features integrated computation and processing of data via dedicated servers. The IoMT is supported with an edge server to assure the mobility of data and information. The backdrop of IoT is a networking framework and hence, the security of such devices under IoT and IoMT is at risk. In this article, a framework and prototype for secure healthcare application processing via blockchain are proposed. The proposed technique uses an optimized Crow search algorithm for intrusion detection and tampering of data extraction in IoT environment. The technique is processed under deep convolution neural networks for comparative analysis and coordination of data security elements. The technique has successfully extracted the instruction detection from un-peer source with a source validation of 100 IoT nodes under initial intervals of 25 nodes based on block access time, block creation, and IPFS storage layer extraction. The proposed technique has a recorded performance efficiency of 92.3%, comparable to trivial intrusion detection techniques under Deep Neural Networks (DNN) supported algorithms.
Heart weakness and restricted blood flow into the cavities can cause a range of strokes from mild to severe Heart strokes are primary caused due to the fat deposited on artery walls. The process reduces the intake of blood and internally causes a pseudo vacuum of air bubbles leading to a stroke which can be identified with high-end instrumentations. In this article, a detailed evaluation is processed with a Hybrid Optimization Algorithm (HOA). In the proposed technique, data are preprocessed using a label encoder and the missing values of the dataset are filled. Whale Optimization Algorithm (WOA) and Crow Search Algorithm(CSA) extract inter-connected patterns and learning features using a dedicated Deep Neural Networking (DNN) support. The proposed Hybrid Optimization Algorithm extracts features and the resultant values demonstrate a high accuracy range of 97.34%.
In today's out-breaking Covid-19 circumstance, treatments are preferred to be contactless. Social distancing has become a mandate in order to prevent disease spreading. In such a scenario, checking the body temperature is preferable to be made contactless because it helps the doctors and social workers to stay away from the symptomatic patients. Infrared (IR) contactless thermometers are employed in measuring the temperature while preventing direct contact with the body. Improved functionalities in the contactless thermometer can provide accurate precision in measurements and calculations. Technological advancement in pharmacy has cohesively improved over time. Coupling Machine Learning (CML) will revolutionize the process of testing. The demand for automated temperature test equipment is likely to grow at a significant pace, with the continuous advancements in technology and the adoption of ATE (Automated Test Equipment). The Global Positioning System (GPS) easy tracking and navigation can be used for easy tracking. Population density can be used to calculate the amount of population in a particular area. The proposed automatic contact-less thermometer system has the potential to replace the traditional temperature measuring techniques and safeguard from human-to-human transmission diseases.
Depression that stems through social media has been steadily growing since the past few years but with the current inclination towards social media reliance it is highly imperative to detect the early signs. Continuous observation of a user's social media interests and activities may highlight suspicious and negative thoughts. This observation can help in understanding their future course of action and also indicate any suicidal thoughts and behaviors. By using the machine learning models, early indications of depression detection can be addressed. This work studies different word embedding techniques for early detection of depression from social media posts. Further, this work develops a model using various NLP processes in order to address the issue of early detection. The recommendations can be useful as a Decision Support System for counselors, psychologist and also can be of good use by the cyber-crime cell department for criminal investigations.
Depression is one of the leading causes of suicides in society. The youth of the 21st century are inclined towards social media for all their needs and expressions. Close friends can easily predict if someone is happy, sad, or depressed from a user’s daily social media activity like status uploads/shares/reposts/check-ins, etc. This activity can be analyzed in order to understand the pattern of mental health. Such data is easily available and if suspected, it can be reported to a Psychiatrist and Psychologist to prevent socially active depressed patients from taking any wrong decisions regarding their life thus providing a Decision Support System (DSS). Various natural language processing techniques have been used in order to detect depression but there is a need for a unified architecture that is based on contextual data and is bidirectional in nature. This can be achieved by using example be achieved by using the Google research project (BERT) Bidirectional Encoder Representations from Transformers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.