The coronavirus family member, SARS-CoV-2 has been identified as the causal agent for the pandemic viral pneumonia disease, COVID-19. At this time, no vaccine is available to control further dissemination of the disease. We have previously engineered a synthetic DNA vaccine targeting the MERS coronavirus Spike (S) protein, the major surface antigen of coronaviruses, which is currently in clinical study. Here we build on this prior experience to generate a synthetic DNA-based vaccine candidate targeting SARS-CoV-2 S protein. The engineered construct, INO-4800, results in robust expression of the S protein in vitro. Following immunization of mice and guinea pigs with INO-4800 we measure antigen-specific T cell responses, functional antibodies which neutralize the SARS-CoV-2 infection and block Spike protein binding to the ACE2 receptor, and biodistribution of SARS-CoV-2 targeting antibodies to the lungs. This preliminary dataset identifies INO-4800 as a potential COVID-19 vaccine candidate, supporting further translational study.
BACKGROUND: Microenvironmental conditions in normal or tumour tissues and cell lines may interfere on further biological analysis. To evaluate transcript variations carefully, it is common to use stable housekeeping genes (HKG) to normalise quantitative microarrays or real-time polymerase chain reaction results. However, recent studies argue that HKG fluctuate according to tissues and treatments. So, as an example of HKG variation under an array of conditions that are common in the cancer field, we evaluate whether hypoxia could have an impact on HKG expression. METHODS: Expression of 10 commonly used HKG was measured on four cell lines treated with four oxygen concentrations (from 1 to 20%). RESULTS: Large variations of HKG transcripts were observed in hypoxic conditions and differ along with the cell line and the oxygen concentration. To elect the most stable HKG, we compared the three statistical means based either on PCR cycle threshold coefficient of variation calculation or two specifically dedicated software. Nevertheless, the best HKG dramatically differs according to the statistical method used. Moreover, using, as a reference, absolute quantification of a target gene (here the proteinase activating receptor gene 1 (PAR1) gene), we show that the conclusions raised about PAR1 variation in hypoxia can totally diverge according to the selected HKG used for normalisation. CONCLUSION: The choice of a valid HKG will determine the relevance of the results that will be further interpreted, and so it should be seriously considered. The results of our study confirm unambiguously that HKG variations must be precisely and systematically determined before any experiment for each situation, to obtain reliable normalised results in the experimental setting that has been designed. Indeed, such assay design, functional for all in vitro systems, should be carefully evaluated before any extension to other experimental models including in vivo ones.
Zika virus (ZIKV) infection is endemic to several world regions, and many others are at high risk for seasonal outbreaks. Synthetic DNA-encoded monoclonal antibody (DMAb) is an approach that enables in vivo delivery of highly potent mAbs to control infections. We engineered DMAb-ZK190, encoding the mAb ZK190 neutralizing antibody, which targets the ZIKV E protein DIII domain. In vivo -delivered DMAb-ZK190 achieved expression levels persisting >10 weeks in mice and >3 weeks in non-human primate (NHPs), which is protective against ZIKV infectious challenge. This study is the first demonstration of infectious disease control in NHPs following in vivo delivery of a nucleic acid-encoded antibody, supporting the importance of this new platform.
Antibody immunotherapy is revolutionizing modern medicine. The field has advanced dramatically over the past 40 years, driven in part by major advances in isolation and manufacturing technologies that have brought these important biologics to the forefront of modern medicine. However, the global uptake of monoclonal antibody (mAb) biologics is impeded by biophysical and biochemical liabilities, production limitations, the need for cold-chain storage and transport, as well as high costs of manufacturing and distribution. Some of these hurdles may be overcome through transient in vivo gene delivery platforms, such as non-viral synthetic plasmid DNA and messenger RNA vectors that are engineered to encode optimized mAb genes. These approaches turn the body into a biological factory for antibody production, eliminating many of the steps involved in bioprocesses and providing several other significant advantages, and differ from traditional gene therapy (permanent delivery) approaches. In this review, we focus on nucleic acid delivery of antibody employing synthetic plasmid DNA vector platforms, and RNA delivery, these being important approaches that are advancing simple, rapid, in vivo expression and having an impact in animal models of infectious diseases and cancer, among others. Key PointsDirect in vivo delivery of synthetic nucleic acidencoded antibodies employing plasmid DNA [plasmid DNA-encoded monoclonal antibodies (pDNA-mAbs)] and messenger RNA-encoded monoclonal antibodies (mRNA-mAbs) platforms represent new approaches for the in vivo delivery of antibody-like biologics.While there are more preclinical data using pDNA-mAbs, both platforms have made significant progress and are demonstrating promising efficacy in infectious disease and cancer studies in small and large animal models.These platforms have advantages such as rapid product development and simpler manufacturing processes, yet they represent different strategies for deployment, with unique advantages and challenges.
Cytolytic T cells (CTL) play a pivotal role in surveillance against tumors. Induction of CTL responses by vaccination may be challenging, as it requires direct transduction of target cells or special adjuvants to promote cross-presentation. Here, we observed induction of robust CTL responses through electroporation-facilitated, DNA-launched nanoparticle vaccination (DLnano-vaccines). Electroporation was observed to mediate transient tissue apoptosis and macrophage infiltration, which were deemed essential to the induction of CTLs by DLnano-vaccines through a systemic macrophage depletion study. Bolus delivery of protein nano-vaccines followed by electroporation, however, failed to induce CTLs, suggesting direct in vivo production of nano-vaccines may be required. Following these observations, new DLnano-vaccines scaffolding immunodominant melanoma Gp100 and Trp2 epitopes were designed and shown to induce more potent and consistent epitope-specific CTL responses than the corresponding DNA monomeric vaccines or CpG-adjuvanted peptide vaccines. DNA, but not recombinant protein, nano-vaccinations induced CTL responses to these epitopes and suppressed melanoma tumor growth in mouse models in a CD8+ T-cell–dependent fashion. Further studies to explore the use of DLnano-vaccines against other cancer targets and the biology with which they induce CTLs are important.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.