Numerical and experimental methods were employed to assess the individual and collective dosimetry of mice used in a bioassay on the exposure to pulsed radiofrequency energy at 900 MHz in the Ferris-wheel exposure system (Utteridge et al., Radiat. Res. 158, 357-364, 2002). Twin-well calorimetry was employed to measure the whole-body specific absorption rate (SAR) of mice for three body masses (23 g, 32 g and 36 g) to determine the lifetime exposure history of the mice used in the bioassay. Calorimetric measurements showed about 95% exposure efficiency and lifetime average whole-body SARs of 0.21, 0.86, 1.7 and 3.4 W kg(-1) for the four exposure groups. A larger statistical variation in SAR was observed in the smallest mice because they had the largest variation in posture inside the plastic restrainers. Infrared thermography provided SAR distributions over the sagittal plane of mouse cadavers. Thermograms typically showed SAR peaks in the abdomen, neck and head. The peak local SAR at these locations, determined by thermometric measurements, showed peak-to-average SAR ratios below 6:1, with typical values around 3:1. Results indicate that the Ferris wheel fulfills the requirement of providing a robust exposure setup, allowing uniform collective lifetime exposure of mice.
An algorithm is presented that accurately and quickly estimates the peak 1-or 10-g averaged specific absorption rate (SAR) in a human phantom when exposed to a wireless device. Instead of performing both an area scan and a zoom scan (as per international standards), only the area scan and knowledge of the transmit frequency are needed. The accuracy of the algorithm has been demonstrated across a broad frequency range (150-2450 MHz) and for both 1-and 10-g averaged SAR using a sample of 264 SAR measurements from 55 wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm are 1.2% and 5.8% for 1-and 10-g averaged SAR, respectively. It is shown that the algorithm works well in both head and body phantoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.