In this paper effects of material properties estimations, used for particulate reinforced composites, on the thermo-mechanical response of functionally graded sphere and cylinder are presented. A numerical solution for an arbitrary material gradation is obtained for each geometry independently. With this assumption, the governing partial differential equations are reduced to an ordinary differential equation in each geometry. The thermo-elastic solution for hollow sphere is derived using spherical symmetry. However, plane strain and axial symmetry are assumed for solving hollow cylinder. In the numerical method, radial domain is divided into some finite sub-domains and material properties are assumed to be constant in each sub-domain. With this assumption, the governing thermal and mechanical equations in each sub-domain are an ODE with constant coefficients. Imposing the continuity conditions at the interface of the adjacent sub-domains, together with the global boundary conditions, a set of linear algebraic equations are derived. Solving the linear algebraic equations, the thermo-elastic responses for the thick-walled FG sphere and cylinder are obtained. Three methods of gradation are used for comparing the effects of different material properties estimations on the results; Rule of Mixtures as a conventional method, Mori-Tanaka estimation and self-consistent scheme. The results show that estimations for material properties could be influential to the thermo-elastic response for some profiles of volume fractions of constituents. However, the effect on elastic response is negligible.
In this paper a semi-analytical method is developed to analyze functionally graded cylindrical panels. In this method, the radial domain is divided into some finite sub-domains and the material properties are assumed to be constant in each subdomain. Imposing the continuity conditions at the interface of the adjacent sub-domains, together with the global boundary conditions, a set of linear algebraic equations are derived. Solving the linear algebraic equations, the elastic response for the thick-walled FG cylindrical panel is obtained. The method can be used for all material properties variations but in present study, material properties are assumed vary with Mori-Tanaka estimation. Results are compared with the first order shear deformation theory and third order shear deformation theory of Reddy and accuracy of these theories in assessed for FG cylindrical panels with different aspect ratios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.