[1] The High Resolution Dynamics Limb Sounder (HIRDLS) experiment was designed to provide global temperature and composition data on the region from the upper troposphere to the mesopause with vertical and horizontal resolution not previously available. The science objectives are the study of small-scale dynamics and transports, including stratosphere-troposphere exchange, upper troposphere/lower stratosphere chemistry, aerosol, cirrus and PSC distributions, and gravity waves. The instrument features 21 channels, low noise levels, high vertical resolution, and a mechanical cooler for long life. During launch most of the optical aperture became obscured, so that only a potion of an optical beam width at a large azimuth from the orbital plane on the side away from the Sun can see the atmosphere. Irrecoverable loss of capabilities include limitation of coverage to the region 65°S-82°N and inability to obtain longitudinal resolution finer than an orbital spacing. While this optical blockage also impacted radiometric performance, extensive effort has gone into developing corrections for the several effects of the obstruction, so that radiances from some of the channels can be put into retrievals for temperature. Changes were also necessary for the retrieval algorithm. The validation of the resulting temperature retrievals is presented to demonstrate the effectiveness of these corrections. The random errors range from $0.5 K at 20 km to $1.0 at 60 km, close to those predicted. Comparisons with high-resolution radiosondes, lidars, ACE-FTS, and ECMWF analyses give a consistent picture of HIRDLS temperatures being 1-2 K warm from 200 to 10 hPa and within ±2 K of standards from 200 to 2 hPa (but warmer in the region of the tropical tropopause), above which HIRDLS appears to be cold. Comparisons show that both COSMIC and HIRDLS can see small vertical features down to about 2 km
The analyzing power in proton-proton scattering has been measured at bombarding energies of 5.05 and 9.85 MeV to an accuracy of ± 5x 10" 5 . The measurements were combined with existing cross-section data to obtain model-independent S-and P-wave phase shifts at these energies. In addition, the first experimental determination of theP-wave scattering lengths and effective ranges is reported. These are compared to model values and their use in obtaining improved S-wave parameters is suggested.
A new technique for detecting ionizing radiation in two dimensions, called "kinestatic charge detection," is proposed and analyzed. This technique is useful when the signal photons must be integrated, as in computed tomography and digital radiography, rather than counted, as in nuclear medicine imaging. A generic treatment of the technique with gas-, liquid-, or solid-state radiation detectors is presented. A theoretical analysis is given of the fundamental physical parameters required for kinestatic charge detection to be successful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.