The strain energy release rate G and its derivative delta G/ delta A are used to provide a general picture of the adherence of viscoelastic bodies. Two bodies in contact on an area A are in equilibrium if G=w, where w is the thermodynamic (or Dupre's) work of adhesion. The quasistatic force of adherence is the load corresponding to delta G/ delta A=0. When G>w, the separation of the two bodies starts, and can be seen as the propagation of a crack in mode I. Three geometries are investigated: adherence of spheres, adherence of punches, and peeling. The variation of energies with the area of contact is given, and the kinetics of crack propagation are studied. The theory is supported by experiments on the adherence of polyurethane to glass.
The maximum bone stress was virtually constant, independent of implant length and bicortical anchorage. The maximum implant stress, however, increased somewhat with implant length and bicortical anchorage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.