The CUORE experiment, a ton-scale cryogenic bolometer array, recently began operation at the Laboratori Nazionali del Gran Sasso in Italy. The array represents a significant advancement in this technology, and in this work we apply it for the first time to a high-sensitivity search for a lepton-number-violating process: ^{130}Te neutrinoless double-beta decay. Examining a total TeO_{2} exposure of 86.3 kg yr, characterized by an effective energy resolution of (7.7±0.5) keV FWHM and a background in the region of interest of (0.014±0.002) counts/(keV kg yr), we find no evidence for neutrinoless double-beta decay. Including systematic uncertainties, we place a lower limit on the decay half-life of T_{1/2}^{0ν}(^{130}Te)>1.3×10^{25} yr (90% C.L.); the median statistical sensitivity of this search is 7.0×10^{24} yr. Combining this result with those of two earlier experiments, Cuoricino and CUORE-0, we find T_{1/2}^{0ν}(^{130}Te)>1.5×10^{25} yr (90% C.L.), which is the most stringent limit to date on this decay. Interpreting this result as a limit on the effective Majorana neutrino mass, we find m_{ββ}<(110-520) meV, where the range reflects the nuclear matrix element estimates employed.
CUORE is a proposed tightly packed array of 1000 TeO2 bolometers, each being a cube 5 cm on a side with a mass of 760 g. The array consists of 25 vertical towers, arranged in a square of 5 towers×5 towers, each containing 10 layers of four crystals. The design of the detector is optimized for ultralow-background searches: for neutrinoless double-beta decay of 130Te (33.8% abundance), cold dark matter, solar axions, and rare nuclear decays. A preliminary experiment involving 20 crystals 3×3×6 cm3 of 340 g has been completed, and a single CUORE tower is being constructed as a smaller-scale experiment called CUORICINO. The expected performance and sensitivity, based on Monte Carlo simulations and extrapolations of present results, are reported
Corresponding author exist scenarios in which the effective Majorana mass of the electron neutrino could be larger than 0.05 eV. Recent developments in detector technology make the observation of 0 νββ decay at this scale now feasible. For recent comprehensive experimental and theoretical reviews see [4][5][6]. Optimism that a direct observation of 0 νββ decay is possible was greatly enhanced by the observation and measurement of the oscillations of atmospheric neutrinos [7], the confirmation by SuperKamiokande [8] of the deficit of 8 B neutrinos observed by the chlorine experiment [9], the observed deficit of p-p neutrinos by SAGE [10] and GALEX [11], and the results of the SNO experiment [12] that clearly showed that the total flux of 8 B neutrinos from the sun predicted by Bahcall and his coworkers [13] is correct. Finally, the data from the KamLAND
We report the final result of the CUORICINO experiment. Operated between 2003 and 2008, with a total exposure of 19.75 kg · y of 130Te, CUORICINO was able to set a lower bound on the 130Te 0νββ half-life of 2.8 × 1024 years at 90% C.L. The limit here reported includes the effects of systematic uncertainties that are examined in detail in the paper. The corresponding upper bound on the neutrino Majorana mass is in the range 300-710 meV, depending on the adopted nuclear matrix element evaluation. © 2011 Elsevier B.V. All rights reserved
The first results are reported on the limit for neutrinoless double decay of 130Te obtained with the new bolometric experiment CUORICINO. The set-up consists of 44 cubic crystals of natural TeO2, 5 cm on the side and 18 crystals of 3×3×6 cm3. Four of these latter crystals are made with isotopically enriched materials: two in 128Te and two others in 130Te. With a sensitive mass of 40 kg, our array is by far the most massive running cryogenic detector to search for rare events. The array is operated at a temperature of 10 mK in a dilution refrigerator under a heavy shield in the Gran Sasso Underground Laboratory at a depth of about 3500 m.w.e. The counting rate in the region of neutrinoless double beta decay is 0.2 counts keV−1 kg−1 y−1, among the lowest in this type of experiment. No evidence for neutrinoless double beta decay is found with the present statistics obtained in about three months with a live time of 72%. The corresponding lower limit for the lifetime of this process is of 5.5×1023 years at 90% C.L. The corresponding limit for the effective neutrino mass ranges between 0.37 to 1.9 eV depending on the theoretically calculated nuclear matrix elements used. This constraint is the most restrictive one except those obtained with Ge diodes, and is comparable to them
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.