Arecanut disease identification is a challenging problem in the field of image processing. In this work, we present a new combination of multi‐gradient‐direction and deep convolutional neural networks for arecanut disease identification, namely, rot, split and rot‐split. Due to the effect of the disease, there are chances of losing vital details in the images. To enhance the fine details in the images affected by diseases, we explore multi‐Sobel directional masks for convolving with the input image, which results in enhanced images. The proposed method extracts arecanut as foreground from the enhanced images using Otsu thresholding. Further, the features are extracted for foreground information for disease identification by exploring the ResNet architecture. The advantage of the proposed approach is that it identifies the diseased images from the healthy arecanut images. Experimental results on the dataset of four classes (healthy, rot, split and rot‐split) show that the proposed model is superior in terms of classification rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.