Bulk polycrystalline samples in the series Ti 1+x S 2 (x = 0 to 0.05) were prepared using high temperature synthesis from the elements and spark plasma sintering. X-ray structure analysis shows that the lattice constant c expands as titanium intercalates between TiS 2 slabs. For x=0, a Seebeck coefficient close to -300 µV/K is observed for the first time in TiS 2 compounds. The decrease in electrical resistivity and Seebeck coefficient that occurs upon Ti intercalation (Ti off stoichiometry) supports the view that charge carrier transfer to the Ti 3d band takes place and the carrier concentration increases. At the same time, the thermal conductivity is reduced by phonon scattering due to structural disorder induced by Ti intercalation. Optimum ZT values of 0.14 and 0.48 at 300K and 700K, respectively, are obtained for x=0.025.
Polycrystalline samples in the series Ti1-xTaxS2 with x varying from 0 to 1 were prepared using solid-liquid-vapor reaction and spark plasma sintering. Rietveld refinements of X-ray diffraction data are consistent with the existence of a full solid solution for x ≤ 0.4. Transport measurements reveal that tantalum can act as electron donor when substituted in the Ti sites. As a consequence, the electrical resistivity and the absolute value of the Seebeck coefficient decrease with Ta content due to an increase in the carrier concentration. The lattice thermal conductivity being reduced due to mass fluctuation effect, the ZT values in Ti0.95Ta0.05S2 is slightly increased as compared to TiS2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.