We review the current status of precision measurements in allowed nuclear beta decay, including neutron decay, with emphasis on their potential to look for new physics beyond the standard electroweak model. The experimental results are interpreted in the framework of phenomenological model-independent descriptions of nuclear beta decay as well as in some specific extensions of the standard model. The values of the standard couplings and the constraints on the exotic couplings of the general beta decay Hamiltonian are updated. For the ratio between the axial and the vector couplings we obtain C A /C V = −1.26992(69) under the standard model assumptions. Particular attention is devoted to the discussion of the sensitivity and complementarity of different precision experiments in direct beta decay. The prospects and the impact of recent developments of precision tools and of high intensity low energy beams are also addressed.
Experiments on ASDEX Upgrade and other tokamaks have shown that the magnitude of mechanical forces and thermal loads during disruptions can be significantly reduced by raising the plasma density with massive injection of noble gases. This method should be applicable to ITER too. Nevertheless, the suppression of the runaway electron (RE) avalanche requires a much larger (two order of magnitude) density rise. This paper reports on recent experiments aimed at increasing the plasma density towards the critical value, needed for the collisional suppression of REs. An effective electron density equal to 24% of the critical density has been reached after injection of 3.3 bar l of neon. However, the resultant large plasma density is very poloidally and toroidally asymmetric; this implies that several valves distributed around the plasma periphery become necessary at this level of massive gas injection to ensure a homogeneous density distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.