The hairless mutation of mice was caused by insertion of a murine leukemia virus. Starting with sequences flanking the provirus, a series of overlapping clones surrounding the viral integration site were obtained. By using a combination of sequencing, PCR, and exon-trapping techniques, the hairless gene was identified. It encodes a predicted protein of 1182 amino acids, incuding a potential zinc-finger domain.The expression patterns of the gene closely reflect the phenotype of animals carrying the hairless mutation.
With a constitutive recycling function and the capacity to digest exogenous material as well as endogenous organelles in the process of autophagy, lysosomes are at the heart of the living cell. Dynamic interactions with other cellular components ensure that the lysosomal compartment is a central point of convergence in countless diverse diseases. Inborn lysosomal (storage) diseases represent about 70 genetically distinct conditions, with a combined birth frequency of about 1 in 7500. Many are associated with macromolecular storage, causing physical disruption of the organelle and cognate structures; in neurons, ectopic dendritogenesis and axonal swelling due to distension with membraneous tubules and autophagic vacuoles are observed. Disordered autophagy is almost universal in lysosomal diseases but biochemical injury due to toxic metabolites such as lysosphingolipid molecules, abnormal calcium homeostasis and endoplasmic reticulum stress responses and immune-inflammatory processes occur. However, in no case have the mechanistic links between individual clinico-pathological manifestations and the underlying molecular defect been precisely defined. With access to the external fluid-phase and intracellular trafficking pathways, the lysosome and its diseases are a focus of pioneering investment in biotechnology; this has generated innovative orphan drugs and, in the case of Gaucher's disease, effective treatment for the haematological and visceral manifestations. Given that two-thirds of lysosomal diseases have potentially devastating consequences in the nervous system, future therapeutic research will require an integrative understanding of the unitary steps in their neuro pathogenesis. Informative genetic variants illustrated by patients with primary defects in this organelle offer unique insights into the central role of lysosomes in human health and disease. We provide a conspectus of inborn lysosomal diseases and their pathobiology; the cryptic evolution of events leading to irreversible changes may be dissociated from the cellular storage phenotype, as revealed by the outcome of therapeutic gene transfer undertaken at different stages of disease.
Tay-Sachs disease, caused by impaired β-N-acetylhexosaminidase activity, was the first GM2 gangliosidosis to be studied and one of the most severe and earliest lysosomal diseases to be described. The condition, associated with the pathological build-up of GM2 ganglioside, has acquired almost iconic status and serves as a paradigm in the study of lysosomal storage diseases. Inherited as a classical autosomal recessive disorder, this global disease of the nervous system induces developmental arrest with regression of attained milestones; neurodegeneration progresses rapidly to cause premature death in young children. There is no effective treatment beyond palliative care, and while the genetic basis of GM2 gangliosidosis is well established, the molecular and cellular events, from disease-causing mutations and glycosphingolipid storage to disease manifestations, remain to be fully delineated. Several therapeutic approaches have been attempted in patients, including enzymatic augmentation, bone marrow transplantation, enzyme enhancement, and substrate reduction therapy. Hitherto, none of these stratagems has materially altered the course of the disease. Authentic animal models of GM2 gangliodidosis have facilitated in-depth evaluation of innovative applications such as gene transfer, which in contrast to other interventions, shows great promise. This review outlines current knowledge pertaining the pathobiology as well as potential innovative treatments for the GM2 gangliosidoses.
Krabbe disease is a devastating neurodegenerative disease characterized by widespread demyelination that is caused by defects in the enzyme galactocerebrosidase (GALC). Disease-causing mutations have been identified throughout the GALC gene. However, a molecular understanding of the effect of these mutations has been hampered by the lack of structural data for this enzyme. Here we present the crystal structures of GALC and the GALC-product complex, revealing a novel domain architecture with a previously uncharacterized lectin domain not observed in other hydrolases. All three domains of GALC contribute residues to the substrate-binding pocket, and disease-causing mutations are widely distributed throughout the protein. Our structures provide an essential insight into the diverse effects of pathogenic mutations on GALC function in human Krabbe variants and a compelling explanation for the severity of many mutations associated with fatal infantile disease. The localization of disease-associated mutations in the structure of GALC will facilitate identification of those patients that would be responsive to pharmacological chaperone therapies. Furthermore, our structure provides the atomic framework for the design of such drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.