We investigate azimuthal instabilities which exist on the periphery of a non-turbulent liquid jet injected transversely into a gaseous cross-flow. We predict that the temporal growth of such instabilities may lead to the formation of interface corrugations, which are eventually sheared off of the jet surface (known as the jet 'surface breakup'). In this study we employ temporal linear stability analyses to understand the nature of these instabilities. The analysis is based on a continuous formulation of momentum equations in which the jet and cross-flow are considered to be slightly miscible at the vicinity of the interface. We identify the shear instability as the primary destabilization mechanism in the flow. This inherently inviscid mechanism opposes the previously suggested mechanism of surface breakup (known as 'boundary-layer stripping'), which is based on a viscous interpretation. The results show that the wavelengths of instabilities increase by moving away from the jet windward stagnation point toward the leeward point. We also investigate the influence of the jet-to-cross-flow density ratio on the flow stability and find that a higher ratio leads to formation of instabilities with higher wavenumbers on the jet surface. The results show that the density may have a non-monotonic stabilizing/destabilizing effect on the flow.
We re-examine the inviscid instability of two-phase parallel flows with piecewise linear velocity profiles. Although such configuration has been theoretically investigated, we employ the concept of waves resonance to physically interpret the instability mechanism as well as the essential role of density discontinuity in the flow. Upon performing linear stability analysis, we demonstrate the existence of neutrally stable “density” and “density-vorticity” waves which are emerged due to the density jump in the flow, in addition to the well-known vorticity waves. Such waves are capable of resonating with each other to form unstable modes in the flow. Although unstable modes in this study are classified as the “shear instability” type, we demonstrate that they are not necessarily of the Rayleigh type. The results also show that the density can have both stabilizing and destabilizing effects on the flow stability. We verify that the difference in the resonating pair of neutral waves leads to such distinct behavior of the density variation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.