is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible.
Abstract:In this paper, a new approach to computing the deviation of wood grain is proposed. To do this, the thermal conduction properties of timber are used (higher conduction in the fiber direction). Exciting the surface of the wood with a laser and capturing the thermal conduction using a thermal camera, an ellipse can be observed. Using a method similar to the tracheid effect, it is possible to extract information from this ellipse, such as the slope of grain and the presence of knots. With this method it is therefore possible to extend the mechanical model (assessing the mechanical properties of timber) to take certain singularities into account. Using this approach, the slope of grain can be estimated for any wood species, either hardwood or softwood, which was not possible with the existing tracheid effect.
References and links
The EU imposes standards for the use of wood in structural applications. Local singularities such as knots affect the wood mechanical properties. They can be revealed by looking at the wood fiber orientation. For this reason, many methods were proposed to estimate the orientation of wood fiber using optical means, X-rays, or scattering measurement techniques. In this paper, an approach to assess the wood fiber orientation based on thermal ellipsometry is developed. The wood part is punctually heated with a Nd-YAG Laser and the thermal response is acquired by an infrared camera. The thermal response is elliptical due to the propagation of the heat through and along the wood fibers. An experiment is presented to show the capacity of such techniques to assess fiber orientation on wood specimen. In addition, an appropriate algorithm is given to extract the orientation of the ellipse.
In recent years, NonDestructive Testing (NDT) systems have been upgraded with three-dimensional information. Indeed, combine the three-dimensional and thermal information allows a more meaningful analysis. In the literature, the data for NDT and three-dimensional (3D) reconstruction analysis are commonly acquired from independent systems. However, the use of two such systems leads to error analysis during the data registration. In an attempt to overcome such problems, we propose a single system based on active thermography approach using heat point-source stimulation to get the 3D digitization as well as subsurface defect detection. The experiments are conducted on steel and aluminum objects, and a combined 3D / thermal-information is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.