In this paper, a one-dimensional computational model of the flow in a common-rail injector is used to compute local variations of fuel temperature (including the temperature change produced upon expansion across the nozzle) and analyse their effect on injector dynamics. These variations are accounted through the adiabatic flow hypothesis, assessed in a first part of the paper where the model features are also described. They imply variations in the fuel properties and the flow
Fuel efficiency improvement and harmful emissions reduction are the main motivations for the development of gas turbine combustors. Numerical computational fluid dynamics (CFD) simulations of these devices are usually computationally expensive since they imply a multi-scale problem. In this work, gaseous non-reactive unsteady Reynolds-Averaged Navier–Stokes and large eddy simulations of a gaseous-fueled radial-swirled lean direct injection combustor have been carried out through CONVERGE™ CFD code by solving the complete inlet flow path through the swirl vanes and the combustor. The geometry considered is the gaseous configuration of the CORIA lean direct injection combustor, for which detailed measurements are available. The emphasis of the work is placed on the demonstration of the CONVERGE™ applicability to the multi-scale gas turbine engines field and the determination of an optimal mesh strategy through several grid control tools (i.e., local refinement, adaptive mesh refinement) allowing the exploitation of its automatic mesh generation against traditional fixed mesh approaches. For this purpose, the normalized mean square error has been adopted to quantify the accuracy of turbulent numerical statistics regarding the agreement with the experimental database. Furthermore, the focus of the work is to study the behavior when coupling several large eddy simulation sub-grid scale models (i.e., Smagorinsky, Dynamic Smagorinsky, and Dynamic Structure) with the adaptive mesh refinement algorithm through the evaluation of its specific performances and predictive capabilities in resolving the spatial-temporal scales and the intrinsically unsteady flow structures generated within the combustor. This investigation on the main non-reacting swirling flow characteristics inside the combustor provides a suitable background for further studies on combustion instability mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.