Fibreboard production is one of the most important industrial activities in Galicia (Spain). Great amounts of wastewater are generated, with properties depending on the type of wood, treatment process, final product and water reusing, among others. These effluents are characterized by a high chemical oxygen demand, low pH and nutrients limitation. Although anaerobic digestion is one of the most suitable processes for the treatment, lately bioplastics production (mainly polyhydroxyalkanoates) from wastewaters with mixed cultures is being evaluated. Substrate requirements for these processes consist of high organic matter content and low nutrient concentration. Therefore, wood mill effluents could be a suitable feedstock. In this work, the possibility of producing bioplastics from to wood mill effluents is evaluated. First, wood mill effluent was converted to volatile fatty acids in an acidogenic reactor operated at two different hydraulic retention times of 1 and 1.5 d. The acidification percentage obtained was 37% and 42%, respectively. Then, aerobic batch assays were performed using fermented wood mill effluents obtained at different hydraulic retention times. Assays were developed using different cultures as inoculums. The maximum storage yield of 0.57 Cmmol/Cmmol was obtained when when the culture was enriched on a synthetic media.
BACKGROUND Brewery wastewater is a potential feedstock for polyhydroxyalkanoates (PHA) production since it contains high concentrations of easily biodegradable organic matter. Activated sludge was submitted to aerobic dynamic feeding conditions in a sequencing batch reactor fed fermented brewery wastewater in order to select a microbial culture with high storage capacity. The effect of several operational parameters, such as substrate concentration (57, 79 and 109 Cmmol L−1), pH (7 and 9 and without pH control (8–9)) and temperature (15 and 30 °C and without T control (15–28 °C)) was investigated. RESULTS The concentration of PHA stored by the activated sludge increased with the substrate concentration, with 39% PHA content on a dry biomass basis obtained at 109 Cmmol L−1. The storage yield increased from 0.35 to 0.43 Cmmol HA Cmmol−1 VFA when the substrate concentration was raised from 57 to 79 Cmmol L−1. However, a further increase in substrate concentration to 109 Cmmol L−1 led to a storage yield decrease to 0.39 Cmmol HA Cmmol−1 VFA. Control of pH and temperature did not enhance PHA storage. CONCLUSIONS Brewery wastewater is a good feedstock for production of PHAs using mixed cultures enriched under feast and famine conditions. PHA production can be enhanced by manipulating the operational conditions. © 2016 Society of Chemical Industry
Fibreboard production is one of the most important industrial activities in Galicia (Spain). Great amounts of wastewater are generated, with properties depending on the type of wood, treatment process, final product and water reusing, among others. These effluents are characterized by a high chemical oxygen demand (COD), low pH and nutrients limitation. Aerobic and anaerobic processes have been used for their treatment. Presently, bioplastics production (mainly polyhydroxyalkanoates or PHA) from wastewaters with mixed cultures is being studied. Substrate requirements for these processes are a high organic matter content and low nutrient concentration. Therefore, wood mill effluents could be a suitable feedstock. PHA production from wastewaters is carried out in three steps. First, complex organic matter is converted into volatile fatty acids (VFA) through acidogenic fermentation. Then, VFA are used as substrate in an aerobic sequencing batch reactor (SBR), in which the enrichement of PHA producing bacteria from a mixed culture is favoured. Finally, the sludge from the SBR is fed with a pulse containing high VFA concentrations, resulting in PHA accumulation inside the cells. In this work, the possibility of applying this process to wood mill effluents is proposed. An acidification percentage of 37% and a storage yield (Y(STO)) of 0.23 Cmmol/Cmmol were obtained.
Nitrification via nitrite was studied in two aerobic reactors treating wastewater from an aminoplastic resin producing factory at HRT varying between 1.37-1.89 and 2.45-3.63 days. Both eactors were fed with concentrations of 366, 450, 1099 and 1899 mg N-NH4+/L. In general in the reactor operated at a lower HRT, the nitritation percentage decreased from 87.2 to 21.6%, while the nitratation percentage remained always lower than 2.5% (except in the last period) when the ammonium concentration was increased. This behaviour could be due to the inhibition of the ammonium and nitrite oxidation produced by high free ammonia concentrations up to 179.3 mg N-NH3/L. In the reactor operated at a higher HRT, the nitritation percentage decreased and the nitratation percentage increased from 88.6 to 39.6% and from 0.65 to 35.7%, respectively, due to an increase of the dissolved oxygen concentration from 0.76 to 1.02 mg O2/L. However, when ammonium was fed at a concentration of 1898.7 mg N-NH4+/L, the nitritation increased and the nitratation decreased, probably as a result of the accumulation of free ammonia up to 2.04 mg N-NH3/L, meaning that nitrite oxidizers were inhibited. Nitrite build-up was observed after each modification of ammonium concentration in the feed.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.