In recent years, the removal of dyes from wastewater has attracted considerable attention due to their harmful effects to ecosystem and human health. Adsorption as a facile and effective technique has been widely used to eliminate a large variety of dyes from aqueous solutions. Activated carbon is the most preferred adsorbent to treat wastewater but its use is limited because of high cost. Therefore, several low-cost and natural materials and wastes have been used as precursors for the preparation of alternative adsorbents. Among them, sawdust as an abundant and low-cost by-product has been explored as adsorbent for the removal of dyes from wastewater. This review focuses on the various sawdust used as a precursor for the preparation of activated carbons. Extensive literature information about sawdust, its compositions, activation methods, its efficiency for dyes removal, and environmental conditions effects has been reviewed. The applicability of various adsorption kinetic models and adsorption isotherm models for dye removal by sawdust-derived activated carbons has been also reported. Finally, this paper highlights the use of sawdust as base material for various composites and mixture which can be used as granular activated carbon.
Batch adsorption experiments have been conducted to investigate the removal of methyl orange from aqueous solution by an activated carbon prepared from prickly pear seed cake by phosphoric acid activation. The adsorption process has been described by using kinetic and isotherm models. The kinetic of adsorption was examined by pseudo-first-order, pseudo-second-order, and intraparticle diffusion models. Adsorption isotherm was modeled using Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms. The adsorption process of methyl orange was well explained by the pseudo-second-order model and Freundlich isotherm. Also, pseudo-n-order model has been applied to estimate the order of adsorption kinetic and it was found equal to 2 which confirm the good accuracy of the pseudo-second order. Moreover, Dubinin–Radushkevich isotherm reveals that the adsorption of methyl orange onto activated carbon was a physisorption process in nature. The adsorption capacity of activated carbon was found to be 336.12 mg/g at temperature 20°C and pH∼7. These results demonstrated that the prickly pear seed cake is a suitable precursor for the preparation of appropriate activated carbon for dyes removal from aqueous solution.
In the present study, the experimental design method was used to optimize the preparation conditions of an activated carbon from prickly pear seed cake by phosphoric acid activation. The parameters studied include impregnation ratio, carbonization temperature, and carbonization time. The optimal conditions for the preparation of the activated carbon with high adsorption capacity for methylene blue were identified to be an impregnation ratio of 2.9, carbonization temperature of 541°C, and carbonization time of 88 min. The obtained activated carbon was characterized by SEM/EDX, FTIR, pHpzc, and its capacity to adsorb methylene blue. FTIR analysis and pHPZC showed the acidic character of the activated carbon surface. The adsorption capacity of the optimal activated carbon was found to be 260 mg·g−1 for methylene blue. The adsorption equilibrium of methylene blue was well explained by the pseudo-second-order model and Freundlich isotherm. Furthermore, the performance of the produced activated carbon was examined by the methyl orange removal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.