Neurofibromin is a large and multifunctional protein encoded by the tumor suppressor gene NF1, mutations of which cause the tumor predisposition syndrome neurofibromatosis type 1 (NF1). Over the last three decades, studies of neurofibromin structure, interacting partners, and functions have shown that it is involved in several cell signaling pathways, including the Ras/MAPK, Akt/mTOR, ROCK/LIMK/cofilin, and cAMP/PKA pathways, and regulates many fundamental cellular processes, such as proliferation and migration, cytoskeletal dynamics, neurite outgrowth, dendritic-spine density, and dopamine levels. The crystallographic structure has been resolved for two of its functional domains, GRD (GAP-related (GTPase-activating protein) domain) and SecPH, and its post-translational modifications studied, showing it to be localized to several cell compartments. These findings have been of particular interest in the identification of many therapeutic targets and in the proposal of various therapeutic strategies to treat the symptoms of NF1. In this review, we provide an overview of the literature on neurofibromin structure, function, interactions, and regulation and highlight the relationships between them.
Neurofibromin (Nf1) is a large multidomain protein encoded by the tumour-suppressor gene NF1. NF1 is mutated in a frequently occurring genetic disease, neurofibromatosis type I, and in various cancers. The best described function of Nf1 is its Ras-GTPase activity, carried out by its GAP-related domain (GRD). SecPH, another structurally well-characterized domain of Nf1, is immediately adjacent to the GRD and interacts with lipids and proteins, thus connecting Nf1 to diverse signalling pathways. Here, we demonstrate, for the first time, that Nf1 and SecPH are substrates of the SUMO pathway. We identified a well-defined SUMOylation profile of SecPH and a main SUMOylation event on Lys1731 that appears to play a role in Ras-GAP activity. Our data allowed us to characterize a new set of pathogenic Nf1 missense mutants that exhibits a disrupted SUMOylation profile that may correlate with their unfolding. Accordingly, Lys1731 SUMOylation is mediated by a noncanonical structural motif, therefore allowing a read-out of SecPH conformation and folding status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.