Traditional clustering algorithms, such as K-Means, perform clustering with a single goal in mind. However, in many real-world applications, multiple objective functions must be considered at the same time. Furthermore, traditional clustering algorithms have drawbacks such as centroid selection, local optimal, and convergence. Particle Swarm Optimization (PSO)-based clustering approaches were developed to address these shortcomings. Animals and their social Behaviour, particularly bird flocking and fish schooling, inspire PSO. This paper proposes the Multi-Objective Clustering Framework (MOCF), an improved PSO-based framework. As an algorithm, a Particle Swarm Optimization (PSO) based Multi-Objective Clustering (PSO-MOC) is proposed. It significantly improves clustering efficiency. The proposed framework's performance is evaluated using a variety of real-world datasets. To test the performance of the proposed algorithm, a prototype application was built using the Python data science platform. The empirical results showed that multi-objective clustering outperformed its single-objective counterparts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.