Autoimmune myasthenia gravis (MG) is a neuromuscular disorder caused by autoantibodies directed against the acetylcholine receptor (AChR). Current symptomatic therapy is based on acetylcholinesterase (AChE) drugs. The available long-term current therapy includes steroids and other immunomodulatory agents. MG is associated with the production of a soluble, rare isoform of AChE, also referred as the “read-through” transcript (AChE-R). Monarsen (EN101) is a synthetic antisense compound directed against the AChE gene. Monarsen was administered in 16 patients with MG and 14 patients achieved a clinically significant response. The drug is now in a Phase II study. Further investigations are required to confirm its long-term effects.
Objectives: To report two novel DNA2 gene mutations causing early onset myopathy with cardiac involvement and late onset mitochondriopathy with rhabdomyolysis.Methods: We performed detailed clinical, muscle histopathology and molecular studies including mitochondrial gene NGS analysis in two patients (Patient 1 and 2), a mother and her son, belonging to a Mexican family, and a third sporadic French patient.Results: Patient 1 and 2 presented with an early onset myopathy associated with ptosis, velopharyngeal weakness, and cardiac involvement. Patient 3 presented rhabdomyolysis unmasking a mitochondrial disease characterized by a sensorineural hearing loss, ptosis, and lipomas. Muscle biopsies performed in all patients showed variable mitochondrial alterations. Patient 3 had multiple mtDNA deletion in his muscle. Genetic studies revealed a novel heterozygous frameshift mutation in DNA2 gene (c.2346delT p.Phe782Leufs*3) in P1 and P2, and a novel heterozygous missense mutation in DNA2 gene (c.578T>C p.Leu193Ser) in the P3.Conclusions: To date only few AD cases presenting either missense or truncating DNA2 variants have been reported. None of them presented with a cardiac involvement or rhabdomyolysis. Here we enlarge the genetic and phenotypic spectrum of DNA2-related mitochondrial disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.