We report the observation of the generation and routing of single plasmons generated by localized excitons in a WSe monolayer flake exfoliated onto lithographically defined Au-plasmonic waveguides. Statistical analysis of the position of different quantum emitters shows that they are (3.3 ± 0.7) times more likely to form close to the edges of the plasmonic waveguides. By characterizing individual emitters, we confirm their single-photon character via the observation of antibunching in the signal ( g(0) = 0.42) and demonstrate that specific emitters couple to modes of the proximal plasmonic waveguide. Time-resolved measurements performed on emitters close to and far away from the plasmonic nanostructures indicate that Purcell factors up to 15 ± 3 occur, depending on the precise location of the quantum emitter relative to the tightly confined plasmonic mode. Measurement of the point spread function of five quantum emitters relative to the waveguide with <50 nm precision is compared with numerical simulations to demonstrate the potential for greater increases in the coupling efficiency for ideally positioned emitters. The integration of such strain-induced quantum emitters with deterministic plasmonic routing is a step toward deep-subwavelength on-chip single quantum light sources.
We report on non-conventional lasing in a photonic-crystal nanocavity that operates with only four solid-state quantum-dot emitters. In a comparison between microscopic theory and experiment, we demonstrate that irrespective of emitter detuning, lasing with is facilitated by means of emission from dense-lying multi-exciton states. In the spontaneous-emission regime we find signatures for radiative coupling between the quantum dots. The realization of different multi-exciton states at different excitation powers and the presence of electronic inter-emitter correlations are reflected in a pump-rate dependence of the β-factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.