Abstract. Hydroxyl (OH) radical reactivity (k OH ) has been measured for 18 years with different measurement techniques. In order to compare the performances of instruments deployed in the field, two campaigns were conducted performing experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich in October 2015 and April 2016. Chemical conditions were chosen either to be representative of the atmosphere or to test potential limitations of instruments. All types of instruments that are currently used for atmospheric measurements were used in one of the two campaigns. The results of these campaigns demonstrate that OH reactivity can be accurately measured for a wide range of atmospherically relevant chemical conditions (e.g. water vapour, nitrogen oxides, various organic compounds) by all instruments. The precision of the measurements (limit of detection < 1 s −1 at a time resolution of 30 s to a few minutes) is higher for instruments directly detecting hydroxyl radicals, whereas the indirect comparative reactivPublished by Copernicus Publications on behalf of the European Geosciences Union. H. Fuchs et al.: OH reactivity comparison in SAPHIRity method (CRM) has a higher limit of detection of 2 s −1 at a time resolution of 10 to 15 min. The performances of the instruments were systematically tested by stepwise increasing, for example, the concentrations of carbon monoxide (CO), water vapour or nitric oxide (NO). In further experiments, mixtures of organic reactants were injected into the chamber to simulate urban and forested environments. Overall, the results show that the instruments are capable of measuring OH reactivity in the presence of CO, alkanes, alkenes and aromatic compounds. The transmission efficiency in Teflon inlet lines could have introduced systematic errors in measurements for low-volatile organic compounds in some instruments. CRM instruments exhibited a larger scatter in the data compared to the other instruments. The largest differences to reference measurements or to calculated reactivity were observed by CRM instruments in the presence of terpenes and oxygenated organic compounds (mixing ratio of OH reactants were up to 10 ppbv). In some of these experiments, only a small fraction of the reactivity is detected. The accuracy of CRM measurements is most likely limited by the corrections that need to be applied to account for known effects of, for example, deviations from pseudo first-order conditions, nitrogen oxides or water vapour on the measurement. Methods used to derive these corrections vary among the different CRM instruments. Measurements taken with a flowtube instrument combined with the direct detection of OH by chemical ionisation mass spectrometry (CIMS) show limitations in cases of high reactivity and high NO concentrations but were accurate for low reactivity (< 15 s −1 ) and low NO (< 5 ppbv) conditions.
Abstract. The investigation of hydroxyl radical (OH) chemistry during intensive field campaigns has led to the development of several techniques dedicated to ambient measurements of total OH reactivity, which is the inverse of the OH lifetime. Three techniques are currently used during field campaigns, including the total OH loss rate method, the pump-probe method, and the comparative reactivity method. However, no formal intercomparison of these techniques has been published so far, and there is a need to ensure that measurements of total OH reactivity are consistent among the different techniques.An intercomparison of two OH reactivity instruments, one based on the comparative reactivity method (CRM) and the other based on the pump-probe method, was performed in October 2012 in a NO x -rich environment, which is known to be challenging for the CRM technique. This study presents an extensive description of the two instruments, the CRM instrument from Mines Douai (MD-CRM) and the pumpprobe instrument from the University of Lille (UL-FAGE), and highlights instrumental issues associated with the two techniques.It was found that the CRM instrument used in this study underestimates ambient OH reactivity by approximately 20 % due to the photolysis of volatile organic compounds (VOCs) inside the sampling reactor; this value is dependent on the position of the lamp within the reactor. However, this issue can easily be fixed, and the photolysis of VOCs was successfully reduced to a negligible level after this intercomparison campaign. The UL-FAGE instrument may also underestimate ambient OH reactivity due to the difficulty to accurately measure the instrumental zero. It was found that the measurements are likely biased by approximately 2 s −1 , due to impurities in humid zero air.Two weeks of ambient sampling indicate that the measurements performed by the two OH reactivity instruments are in agreement, within the measurement uncertainties for each instrument, for NO x mixing ratios up to 100 ppbv. The CRM technique has hitherto mainly been used in low-NO x environments, i.e. environments with ambient NO x mixing ratios lower than a few ppbv, due to a measurement artifact generated by ambient NO inside the sampling reactor. However, this study shows that this technique can also be used under NO x -rich conditions if a NO x -dependent correction is carefully applied on the OH reactivity measurements.A full suite of 52 VOCs, NO x , and other inorganic species were monitored during this intercomparison. An investigation of the OH reactivity budget for this urban site suggests that this suite of trace gases can account for the measured total OH reactivity.
The characteristics of indoor light (intensity, spectral, spatial distribution) originating from outdoors have been studied using experimental and modeling tools. They are influenced by many parameters such as building location, meteorological conditions, and the type of window. They have a direct impact on indoor air quality through a change in chemical processes by varying the photolysis rates of indoor pollutants. Transmittances of different windows have been measured and exhibit different wavelength cutoffs, thus influencing the potential of different species to be photolysed. The spectral distribution of light entering indoors through the windows was measured under different conditions and was found to be weakly dependent on the time of day for indirect cloudy, direct sunshine, partly cloudy conditions contrary to the light intensity, in agreement with calculations of the transmittance as a function of the zenithal angle and the calculated outdoor spectral distribution. The same conclusion can be drawn concerning the position within the room. The impact of these light characteristics on the indoor chemistry has been studied using the INCA-Indoor model by considering the variation in the photolysis rates of key indoor species. Depending on the conditions, photolysis processes can lead to a significant production of radicals and secondary species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.