Accounting scandals like Enron (2001) and Petrobas (2014) remind us that untrustworthy financial information has an adverse effect on the stability of the economy and can ultimately be a source of systemic risk. This financial information is derived from processes and their related monetary flows within a business. But as the flows are becoming larger and more complex, it becomes increasingly difficult to distill the primary processes for large amounts of transaction data. However, by extracting the primary processes we will be able to detect possible inconsistencies in the information efficiently. We use recent advances in network embedding techniques that have demonstrated promising results regarding node classification problems in domains like biology and sociology. We learned a useful continuous vector representation of the nodes in the network which can be used for the clustering task, such that the clusters represent the meaningful primary processes. The results show that we can extract the relevant primary processes which are similar to the created clusters by a financial expert. Moreover, we construct better predictive models using the flows from the extracted primary processes which can be used to detect inconsistencies. Our work will pave the way towards a more modern technology and data-driven financial audit discipline.
Categorization of business processes is an important part of auditing. Large amounts of transnational data in auditing can be represented as transactions between financial accounts using weighted bipartite graphs. We view such bipartite graphs as many-valued formal contexts, which we use to obtain explainable categorization of these business processes in terms of financial accounts involved in a business process by using methods in formal concept analysis. The specific explainability feature of the methodology introduced in the present paper provides several advantages over e.g. non-explainable machine learning techniques, and in fact, it can be taken as a basis for the development of algorithms which perform the task of clustering on transparent and accountable principles. Here, we focus on obtaining and studying different ways to categorize according to different extents of interest in different financial accounts, or interrogative agendas, of various agents or sub-tasks in audit. We use Dempster-Shafer mass functions to represent agendas showing different interest in different set of financial accounts. We propose two new methods to obtain categorizations from these agendas. We also model some possible deliberation scenarios between agents with different interrogative agendas to reach an aggregated agenda and categorization. The framework developed in this paper provides a formal ground to obtain and study explainable categorizations from the data represented as bipartite graphs according to the agendas of different agents in an organization (e.g. an audit firm), and interaction between these through deliberation.
Auditing is a multi-billion dollar market, with auditors assessing the trustworthiness of financial data, contributing to financial stability in a more interconnected and faster-changing world. We measure cross-sectoral structural similarities between firms using microscopic real-world transaction data. We derive network representations of companies from their transaction datasets, and we compute an embedding vector for each network. Our approach is based on the analysis of 300+ real transaction datasets that provide auditors with relevant insights. We detect significant changes in bookkeeping structure and the similarity between clients. For various tasks, we obtain good classification accuracy. Moreover, closely related companies are near in the embedding space while different industries are further apart suggesting that the measure captures relevant aspects. Besides the direct applications in computational audit, we expect this approach to be of use at multiple scales, from firms to countries, potentially elucidating structural risks at a broader scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.