Genetic transformation of an elite white poplar genotype (Populus alba L., cv. 'Villafranca') was performed with MAT vectors carrying the ipt and rol genes from Agrobacterium spp. as morphological markers. The effects associated with the use of different gene promoters and distinct in vitro regeneration protocols were evaluated. Poplar plantlets showing abnormal ipt and rol phenotypes were produced only in the presence of exogenous growth regulators. The occurrence of abnormal ipt and rol phenotypes allowed the visual selection of transformants. The ipt-type MAT vector pEXM2 was used to monitor the activity of the yeast site-specific recombination R/RS system in the transformed white poplar cells. Results from these experiments demonstrated that recombinase-mediated excision events occurred during the early stages of in vitro culture, thus causing the direct production of ipt marker-free transgenic plants with normal phenotype at an estimated frequency of 36.4%. Beside this unexpected finding, transgenic ipt-shooty plants were obtained at a frequency of 63.6% and normal shoots were subsequently recovered after a prolonged period of in vitro culture. Although the transformation efficiency observed in this study, using both ipt and nptII genes as selection markers, was similar to that previously reported with standard vectors carrying only the nptII gene, the easy identification of ipt transformants, the early recombinase-mediated excision events and finally the relatively short time period required to produce ipt marker-free transgenic plants support for the choice of MAT vectors as a reliable strategy for the future production of marker-free GM poplars.
The aim of this study was to investigate the culturable bacteria living in soil cultivated with Basta-tolerant transgenic white poplars (Populus alba L. 'Villafranca'). Plate Count Agar medium containing phosphinothricin, the active component of Basta, was used to isolate the herbicide-resistant bacteria (HRB). No significant changes in the size of the soil microbial flora following herbicide treatment were observed. The characterization of HRB isolates by 16S rDNA-based taxonomy revealed a predominance of Pseudomonas and Bacillus species. The screening carried out on soil samples allowed for the recovery of isolates with useful properties for biotechnological and agronomical purposes, particularly in relation to root development. Among the tested isolates, only HRB-1b, HRB-1c, and HRB-7 showed remarkable swarming ability, a valuable trait supporting the beneficial plant-microbe interactions. HRB-1c was also characterized by consistent production of indoleacetic acid (17.8 +/- 0.09 microg x mL-1 x (OD600 unit)-1), and it was able to stimulate the in vitro growth of Villafranca explants. Since novel tools are constantly required to enhance productivity of perennial species and to expand their use for practical purposes, the availability of bacteria that support tree growth, such as the HRB-1c isolate, represents a significant advantage.
The aim of this study was the isolation and characterization of the culturable bacteria inhabiting the leaves of transgenic white poplars (Populus alba L. 'Villafranca') engineered with the StSy gene for the production of resveratrol-like compounds. Resveratrol glucosides are available in small amounts from natural sources or by expensive chemical synthesis procedures. An alternative approach for the large-scale production of these relevant pharmaceuticals is the use of transgenic plants as bioreactors, although the occurrence of novel molecules in plants growing under field conditions might interfere, to some extent, with the associated microbial population. Both epiphytes and endophytes were isolated from the leaves of 2 StSy transgenic lines producing resveratrol glucosides and from an untransformed plant line grown in a greenhouse. Eleven isolates were recovered and classified as members of the genus Bacillus by 16S rDNA-based analysis. In addition, 2 isolates were classified as members of the Curtobacterium and Kocuria genera, respectively. Tolerance to hydrogen peroxide, UV-C, and paraquat was evaluated, as were the swimming and swarming motility of the leaf-associated bacteria. Interestingly, the isolates recovered from transgenic tissues showed the ability to withstand oxidative stress compared with isolates recovered from the untransformed poplar line. In vitro bioassays showed that trans-resveratrol inhibited both the swarming and swimming motilities in all the tested bacteria. The effects of trans-resveratrol on flagellin production, required for motility, were also investigated by immunoblot analysis.
This study was carried out using soil cultivated, under greenhouse conditions, with transgenic white poplars expressing the bar gene for tolerance to the Basta ® herbicide. The occurrence of extracellular nucleolytic activity was monitored in soil samples collected at four different times over a 26-month period. The fraction of nuclease producing bacteria (NPB) ranged from 62.5 to 100% of the total culturable bacterial population. The DNA-methyl green plate assay allowed to distinguish five groups of bacteria showing increasing levels of extracellular DNase activity. The NPB isolates were classified by 16S rDNA sequence analysis as members of the Bacillus, Brevibacillus, Microbacterium, Pseudomonas and Stenotrophomonas genera. For each genus, NPB isolates were cultured in liquid medium and the nucleolytic activity during different growth phases was monitored. Production of extracellular nucleases was observed only during the mid-exponential growth phase of the Brevibacillus, Microbacterium and Stenotrophomonas isolates, while no activity was evidenced for isolates classified within the Bacillus and Pseudomonas genera.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.