Receptor tyrosine kinases (RTK) are targets for anticancer drug development. To date, only RTK inhibitors that block orthosteric binding of ligands and substrates have been developed. Here, we report the pharmacologic characterization of the chemical SSR128129E (SSR), which inhibits fibroblast growth factor receptor (FGFR) signaling by binding to the extracellular FGFR domain without affecting orthosteric FGF binding. SSR exhibits allosteric properties, including probe dependence, signaling bias, and ceiling effects. Inhibition by SSR is highly conserved throughout the animal kingdom. Oral delivery of SSR inhibits arthritis and tumors that are relatively refractory to anti-vascular endothelial growth factor receptor-2 antibodies. Thus, orally-active extracellularly acting small-molecule modulators of RTKs with allosteric properties can be developed and may offer opportunities to improve anticancer treatment.
In the search of a potential backup for clopidogrel, we have initiated a HTS campaign designed to identify novel reversible P2Y12 antagonists. Starting from a hit with low micromolar binding activity, we report here the main steps of the optimization process leading to the identification of the preclinical candidate SAR216471. It is a potent, highly selective, and reversible P2Y12 receptor antagonist and by far the most potent inhibitor of ADP-induced platelet aggregation among the P2Y12 antagonists described in the literature. SAR216471 displays potent in vivo antiplatelet and antithrombotic activities and has the potential to differentiate from other antiplatelet agents.
SummaryThe aim of this study was to describe the pharmacological properties of SR 121787, a new antiaggregating drug which is metabolized in vivo into SR 121566, a potent non-peptide antagonist of Gp IIb/IIIa. In vitro, SR 121566 antagonized the binding of [125I]-fibrinogen (IC50 = 19.8 ± 6.3 nM) and of [125I]-L-692,884, an RGD-containing peptide (IC50 = 291 ± 96 nM) to activated human platelets. SR 121566 inhibited the aggregation of human platelets induced by ADP, collagen, thrombin, arachidonic acid and PAF at concentrations lower than 0.1 μM. Adhesion of human platelets to adhesive proteins was inhibited by SR 121566 (IC50 = 40.3 ± 2.5 nM) only when Gp IIb/IIIa and fibrinogen were involved. No effect was found with regard to other adhesive proteins and/or other integrins. SR 121787 demonstrated a potent and sustained antiaggregating effect when administered intravenously to baboons at a dose 50 μg/kg, and eight hours after the administration of 100 μg/kg, ADP-induced aggregation was still strongly inhibited (more than 80%). A single oral administration of 2 mg/kg of SR 121787 produced a nearly complete inhibition of platelet aggregation for up to 8 h (ED50 at 8 h = 193 ± 20 μg/kg), a significant residual antiaggregating activity being still observed 24h after the administration. When administered orally to rabbits, SR 121787 exhibited a potent antiaggregating (ED50 = 2.3 ± 0.3 mg/kg) and antithrombotic activity in an arterio-venous shunt thrombosis model (ED50 = 10.4 ± 0.8 mg/kg). After oral and IV administration, SR 121787 was well tolerated suggesting that SR 121787, the most potent and long lasting orally active Gp IIb/IIIa antagonist described to date, is a promising antithrombotic compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.