M . B OU M AH DI , P. MA R Y A ND J .-P. H OR NE Z . 1999. The influence of growth phase on the evolution of cellular fatty acids (CFA) and survival of Sinorhizobium and Bradyrhizobium during desiccation and storage at different levels of relative humidity (R.H.) was studied. Lactobacillic, cis vaccenic and palmitic acids were the major fatty acids of S. meliloti RCR 2011, B. elkanii USDA 120 and B. japonicum 3.2, whatever the growth phase. An exchange of cis vaccenic with lactobacillic acid was observed during the course of growth. The degree of unsaturation (% unsaturated CFA/% saturated CFA u/s ratio) was significantly higher during the mid logarithmic phase of growth. Survival rates immediately after desiccation were unaffected by the growth phase and the R.H. Furthermore, no correlation was found between survival rate and u/s ratio. During the course of desiccation, the u/s ratio of rhizobia decreased but the decrease was largely independent of the R.H. Optimum R.H. values for storage were in the range 22-67·8%, and S. meliloti was significantly more tolerant than the bradyrhizobia. Cells of rhizobia harvested in the lag phase of growth were more resistant to protracted storage than cells at other growth phases. Again, no correlation was found between u/s ratio and survival rates, despite the expected practical significance for screening for drought-tolerant micro-organisms.
The effects of growth phase, reductions in the water activity (a(w)) of the growth medium and mild desiccation on the composition and the degree of unsaturation of cellular fatty acids (CFA) of Sinorhizobium meliloti, Bradyrhizobium elkanii and Bradyrhizobium japonicum were studied. During the course of growth, an interchange of cis-vaccenic with lactobacillic acid and a slight increase in palmitic acid were observed while other fatty acids remained constant. The degree of unsaturation was significantly higher in the exponential phase of growth. Reductions in the a(w) of the medium led to an increase in lag phase, a reduction in growth rate and maximal optical densities (OD) in stationary phase cells. A decrease in the degree of unsaturation of CFA was also observed as the a(w) was reduced from 0.999 to 0.969 and after desiccation to 83.5% relative humidity (R.H.). The changes in the degree of unsaturation of CFA observed after growth at reduced a(w) may be one of the pre-adaptation steps to endure more severe desiccation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.