ABSTRACT. The tumoral uptake of fluorine-18-deoxyglucose (FDG) is based upon enhanced glycolysis. Following injection, FDG is phosphorylated and trapped intracellularly. An important mechanism to transport FDG into the transformed cell is based upon the action of glucose transporter proteins; furthermore, highly active hexokinase bound to tumor mitochondria helps to trap FDG into the cell. In addition, enhanced FDG uptake may be due to relative hypoxia in tumor masses, which activates the anaerobic glycolytic pathway. In spite of these processes, FDG uptake is relatively aspecific since all living cells need glucose. Clinical use is therefore recommended in carefully selected patients. NUCL MED BIOL 25;4:317-322, 1998.
The individual response to ionizing radiation (IR) raises a number of medical, scientific, and societal issues. While the term “radiosensitivity” was used by the pioneers at the beginning of the 20st century to describe only the radiation-induced adverse tissue reactions related to cell death, a confusion emerged in the literature from the 1930s, as “radiosensitivity” was indifferently used to describe the toxic, cancerous, or aging effect of IR. In parallel, the predisposition to radiation-induced adverse tissue reactions (radiosensitivity), notably observed after radiotherapy appears to be caused by different mechanisms than those linked to predisposition to radiation-induced cancer (radiosusceptibility). This review aims to document these differences in order to better estimate the different radiation-induced risks. It reveals that there are very few syndromes associated with the loss of biological functions involved directly in DNA damage recognition and repair as their role is absolutely necessary for cell viability. By contrast, some cytoplasmic proteins whose functions are independent of genome surveillance may also act as phosphorylation substrates of the ATM protein to regulate the molecular response to IR. The role of the ATM protein may help classify the genetic syndromes associated with radiosensitivity and/or radiosusceptibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.