The optimization of dietary phosphorus (P) and calcium (Ca) supply requires a better understanding of the effect of dietary fiber content of co-products on the digestive utilization of minerals. This study was designed to evaluate the effects of dietary fiber content from 00-rapeseed meal (RSM) on P and Ca digestibility throughout the gastrointestinal tract in growing pigs fed diets without or with microbial phytase. In total, 48 castrated male pigs (initial BW=36.1±0.4 kg) were housed in metabolic crates for 29 days. After an 8-day adaptation period, pigs were allocated to one of the eight treatments. The impact of dietary fiber was modulated by adding whole RSM (wRSM), dehulled RSM (dRSM) or dRSM supplemented with 4.5% or 9.0% rapeseed hulls (dRSMh1 and dRSMh2). Diets contained 0 or 500 phytase unit of microbial phytase per kg. From day 14 to day 23, feces and urine were collected separately to determine apparent total tract digestibility (ATTD) and apparent retention (AR) of P and Ca. At the end of the experiment, femurs and digestive contents were sampled. No effect of variables of interest was observed on growth performance. Microbial phytase increased ATTD and AR of P (P<0.001) but the P equivalency with the wRSM diet was lower than expected. Moreover, stomach inorganic P (iP) solubility was improved by microbial phytase (P<0.001). The ATTD of Ca was not affected by microbial phytase which increased AR of Ca and femur characteristics (P<0.05). Ileal recovery of P was not affected by microbial phytase but cecal recovery was considerably reduced by microbial phytase (P<0.001). The decrease in digesta pH between the distal ileum and cecum (7.6 v. 5.9) enhanced the solubility of iP and may have improved its absorption, as supported by the negative relationship between soluble iP and pH (R 2=0.40, P<0.001 without microbial phytase and R 2=0.24, P=0.026 with microbial phytase). The inclusion of hulls improved the solubility of iP (P<0.05). In conclusion, dehulling does not largely increase nutrient digestibility although dRSM seems to improve the efficacy of microbial phytase in releasing phosphate in the stomach. Moreover, dietary fiber may affect solubilization process in the cecum which potentiates the effect of microbial phytase on P digestibility.
Two experiments were conducted on broilers to assess the effect of dietary fiber from 00-rapeseed meal (RSM) on phosphorus (P) and calcium (Ca) apparent ileal digestibility (AID) and retention (AR) during the growing (Exp1: 10 to 21 d) or finishing period (Exp2: 21 to 31 d) in diets supplemented or not with microbial phytase. Each experiment involved 144 male Cobb 500 fed one of 8 diets. Fiber content was modulated by incorporating whole RSM, RSM from dehulled rapeseeds, either raw or supplemented with 2 levels of defatted rapeseed hulls. Diets were supplemented or not with 750 phytase units of microbial phytase per kg. Excreta were collected from d 14 to d 17 (Exp1) and from d 27 to d 30 (Exp2) to measure AR. At the end of experiments, digestive tracts were sampled and weighed. The distal ileum and tibias were collected to measure AID and bone mineralization, respectively. Age did not significantly alter the response of birds to the addition of dietary fiber. Inclusion of hulls decreased growth performance (P < 0.05). The weight of the proventriculus-gizzard (PG) increased with the dietary fiber content in Exp1: The decreased weight observed using dehulled RSM was reversed following the inclusion of hulls. In both trials, while the presence of phytase increased the AID of P (P < 0.001) but not Ca, the inclusion of hulls with phytase improved the AID of P and Ca [linear (Lin), P < 0.05]. This effect could depend on the effect of fiber on PG development and physiology. Hulls decreased the moisture content of excreta (P < 0.01), suggesting higher water retention or lower water consumption with fiber. The AR of P was lower than AID of P with hulls, contrary to Ca, suggesting a metabolic imbalance. The decrease of AR together with the decrease of bone characteristics indicates a lack of Ca in diets with hulls and suggests that P and Ca provision should be adapted to the level and the origin of fiber inclusion.
Dietary electrolyte balance (dEB) is known to affect acid−base status and mineral metabolism, but is rarely considered in diet formulation for pigs. Yet, the use of a wide variety of local feedstuffs in Europe contributes to lowering the dEB and increasing the fibre content. Hence, mineral requirements may be modified and skeletal health affected. Therefore, the effects of a lower dEB and a higher dietary Ca level on acid−base balance and mineral status were assessed in young pigs fed a diversified diet. A total of twenty-four weaned pigs were fed a control moderate-dEB diet (C) or a diversified moderate-dEB (D), low-dEB (D-A) or low-dEB supplemented with Ca (D-CA) diet. Growth performance, venous blood gas and chemistry, urine pH, mineral balance and femur characteristics were determined. With an equivalent dEB compared with the C diet, the D diet caused an acidification of the urine and increased the excretion of P as a result of a higher dietary content of S. Low-grade metabolic acidosis occurred in piglets fed the D-A diet with changes at systemic and urine levels. A higher excretion of ammonia and P in urine was observed and some bone characteristics tended to be negatively affected. Ca supplementation partially counteracted the effects of low-grade acidosis. Urine excretion of P and ammonia was alleviated and bone characteristics improved. In conclusion, a higher Ca supply must be considered in more diversified diets to counteract the risk of evolving towards low-grade metabolic acidosis which can negatively affect bone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.