This study describes the first known model of bone cancer pain in the rat. Sprague-Dawley rats receiving intra-tibial injections of syngeneic MRMT-1 rat mammary gland carcinoma cells developed behavioural signs indicative of pain, including: mechanical allodynia, difference of weight bearing between hind paws and mechanical hyperalgesia. The development of the bone tumour and structural damage to the bone was monitored by radiological analysis, quantitative measurement of mineral content and histology. Intra-tibial injections of 3 x 10(3) or 3 x 10(4) syngeneic MRMT-1 cells produced a rapidly expanding tumour within the boundaries of the tibia, causing severe remodelling of the bone. Radiographs showed extensive damage to the cortical bone and the trabeculae by day 10-14 after inoculation of 3 x 10(3) MRMT-1 cells, and by day 20, the damage was threatening the integrity of the tibial bone. While both mineral content and mineral density decreased significantly in the cancerous bone, osteoclast numbers in the peritumoural compact bone remained unchanged. However, tartarate-resistant acid phosphatase staining revealed a large number of polykariotic cells, resembling those of osteoclasts within the tumour. No tumour growth was observed after the injection of heat-killed MRMT-1 cells. Intra-tibial injections of 3 x 10(3) or 3 x 10(4) MRMT-1 cells, heat-killed cells or vehicle did not show changes in body weight and core temperature over 19-20 days. The general activity of animals after injection with live or heat-killed MRMT-1 cells was higher than that of the control group, however, the activity of the MRMT-1 treated group declined during the progress of the disease. Rats receiving intra-tibial injections of MRMT-1 cells displayed the gradual development of mechanical allodynia and mechanical hyperalgesia/reduced weight bearing on the affected limb, beginning on day 12-14 or 10-12 following injection of 3 x 10(3) or 3 x 10(4) cells, respectively. These symptoms were not observed in rats receiving heat-killed cells or vehicle. Behavioural data suggest a reasonable time window for evaluation of anti-nociceptive agents between day 14 and 20 after cancer cell inoculation in this model. Acute treatment with morphine (1-3mg/kg, subcutanously (s.c.)) produced a dose-dependent reduction in the response frequency of hind paw withdrawal to von Frey filament stimulation 17 or 19 days following intra-tibial injections of 3 x 10(3) MRMT-1 cells. A significant reduction in the difference in hind limb weight bearing was also observed. Acute treatment with celebrex (10-30 mg/kg, s.c.) did not affect mechanical allodynia or difference in weight bearing in rats 20 days following treatment with 3 x 10(3) MRMT-1 cells. Although the pathophysiology of cancer pain is largely unknown, significant enhancement of glial fibrillary acidic protein (GFAP) staining in the corresponding segments of the ipsilateral spinal cord highlights the possible involvement of astrocytes. In summary, the induction of bone cancer in the rat by the syngeneic MRM...
Inoculation of syngeneic MRMT-1 mammary tumour cells into one tibia of female rats produced tumour growth within the bone associated with a reduction in bone mineral density (BMD) and bone mineral content (BMC), severe radiological signs of bone destruction, together with the development of behavioural mechanical allodynia and hyperalgesia. Histological and radiological examination showed that chronic treatment with the bisphosphonate, zoledronic acid (30 microg/kg, s.c.), for 19 days significantly inhibited tumour proliferation and preserved the cortical and trabecular bone structure. In addition, BMD and BMC were preserved and a dramatic reduction of tartrate resistant acid phosphatase-positive polykaryocytes (osteoclasts) was observed. In behavioural tests, chronic treatment with zoledronic acid but not the significantly less effective bisphosphonate, pamidronate, or the selective COX-2 inhibitor, celebrex, attenuated mechanical allodynia and hyperalgesia in the affected hind paw. Zoledronic acid also attenuated mechanical hyperalgesia associated with chronic peripheral neuropathy and inflammation in the rat. In contrast, pamidronate or clodronate did not have any anti-hyperalgesic effect on mechanical hyperalgesia in the neuropathic and inflammatory pain models. We conclude that zoledronic acid, in addition to, or independent from, its anti-metastatic and bone preserving therapeutic effects, is an anti-nociceptive agent in a rat model of metastatic cancer pain. This unique property of zoledronic acid amongst the bisphosphonate class of compounds could make this drug a preferred choice for the treatment of painful bone metastases in the clinic.
The anti-nociceptive and locomotor effects of the nicotinic acetylcholine receptor (nAChR) agonists (+)-epibatidine and ABT-594 were compared in the rat. Acute thermal nociception was measured using the tail flick test. Mechanical hyperalgesia was measured as paw withdrawal threshold (PWT) in response to a mechanical stimulus in two animal models of persistent pain; (1) 24 h following subplantar injections of Freund's complete adjuvant (FCA) into the left hind paw or (2) 11-15 days following a partial ligation of the left sciatic nerve. Disruption of locomotor function was assessed using an accelerating rotarod device. In all tests, (+)-epibatidine was significantly more potent than ABT-594. Both (+)-epibatidine and ABT-594 dose-dependently increased tail flick latencies but only at doses that also disrupted performance in the rotarod test. On the other hand, (+)-epibatidine and ABT-594 dose-dependently reversed inflammatory and neuropathic hyperalgesia at significantly lower doses than that needed to disrupt performance in the rotarod test. In summary, ABT-594 is less potent than (+)-epibatidine in assays of acute and persistent pain and in the rotarod assay. However, ABT-594 displayed a clearer separation between its motor and anti-hyperalgesic effects. This shows that nicotinic agonists with improved selectivity between the nicotinic receptor subtypes could provide strong analgesic effects with a much improved therapeutic window.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.