The Pauli exclusion principle (PEP) is one of the basic principles of modern physics and, even if there are no compelling reasons to doubt its validity, it is still debated today because an intuitive, elementary explanation is still missing, and because of its unique stand among the basic symmetries of physics. The present Letter reports a new limit on the probability that PEP is violated by electrons, in a search for an anomalous Kα line in copper: the presence of this line in the soft X-ray copper fluorescence would signal a transition to a ground state already occupied by 2 electrons. The obtained value, \beta^2/2 < 4.5e-28, improves the existing limit by almost two orders of magnitude
The VIolation of Pauli (VIP) experiment (and its upgraded version, VIP-2) uses the Ramberg and Snow (RS) method (Phys. Lett. B 1990, 238, 438) to search for violations of the Pauli exclusion principle in the Gran Sasso underground laboratory. The RS method consists of feeding a copper conductor with a high direct current, so that the large number of newly-injected conduction electrons can interact with the copper atoms and possibly cascade electromagnetically to an already occupied atomic ground state if their wavefunction has the wrong symmetry with respect to the atomic electrons, emitting characteristic X-rays as they do so. In their original data analysis, RS considered a very simple path for each electron, which is sure to return a bound, albeit a very weak one, because it ignores the meandering random walks of the electrons as they move from the entrance to the exit of the copper sample. These complex walks bring the electrons close to many more atoms than in the RS calculation. Here, we consider the full description of these walks and show that this leads to a nontrivial and nonlinear X-ray emission rate. Finally, we obtain an improved
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.